Co-overexpression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 enhances salt and drought tolerance in transgenic Lotus corniculatus by increasing cations accumulation

【来源:草地农业科技学院 | 发布日期:2014-10-20 | 作者:王锁民 】    

Bao AK, Wang YW, Xi JJ, Liu C, Zhang JL, Wang SM*. Co-overexpression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 enhances salt and drought tolerance in transgenic Lotus corniculatus by increasing cations accumulation. Functional Plant Biology. 2014 41(2): 203-214

摘要:

Lotus corniculatus L. is an important legume for forage, but is sensitive to salinity and drought. To develop salt- and drought-resistant L. corniculatus, ZxNHX and ZxVP1-1 genes encoding tonoplast Na+/H+ antiporter and H+-pyrophosphatase (H+-PPase) from a succulent xerophyte Zygophyllum xanthoxylum L., which is well adapted to arid environments through accumulating Na+ in its leaves, were transferred into this forage. We obtained the transgenic lines co-expressing ZxNHX and ZxVP1-1 genes (VX) as well as expressing ZxVP1-1 gene alone (VP). Compared with wild-type, both VX and VP transgenic lines grew better at 200 mM NaCl, and also exhibited higher tolerance and faster recovery from water-deficit stress: these performances were associated with more Na+, K+ and Ca2+ accumulation in their leaves and roots, which caused lower leaf solute potential and thus retained more water. Moreover, the transgenic lines maintained lower relative membrane permeability and higher net photosynthesis rate under salt or water-deficit stress. These results indicate that expression of tonoplast Na+/H+ antiporter and H+-PPase genes from xerophyte enhanced salt and drought tolerance of L. corniculatus. Furthermore, compared with VP, VX showed higher shoot biomass, more cations accumulation, higher water retention, lesser cell membrane damage and higher photosynthesis capacity under salt or water-deficit condition, suggesting that co-expression of ZxVP1-1 and ZxNHX confers even greater performance to transgenic L. corniculatus than expression of the single ZxVP1-1.

全文:Co-overexpression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 enhances salt and drought tolerance in transgenic Lotus corniculatus by increasing cations accumulation.pdf

 

 

Copyright (C) 兰州大学草地农业科技学院2009-2010 All Rights Reserved
地址:甘肃省兰州市嘉峪关西路768号 邮编:730020