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Abstract
Pastures play vital roles in carbon (C) sequestration and the global C balance. Partial root-zone drying (PRD) is widely known 
to reduce water consumption with a minimum impact on alfalfa productivity in the field. A 2-year field experiment was used 
to investigate the effects of PRD on C retention in the soil-plant systems of alfalfa. This field experiment consisted of two 
factors (irrigation modes and irrigation volumes) in a split-plot design. The two irrigation modes were PRD and conventional 
furrow irrigation, and the four irrigation levels were 70%, 85%, 100%, and 115% alfalfa potential evapotranspiration. This 
study showed that PRD increased the C in alfalfa plants due to higher C in alfalfa roots. PRD led to higher soil organic C 
storage, whereas it led to lower soil total C and soil inorganic C storage. PRD was found to decrease the C retention in the 
soil-plant systems of alfalfa. The findings of this study display a pattern of PRD influencing C retention in the soil-plant 
systems of perennial crops, and imply that PRD reduces the C sequestration potential of alfalfa pastures.

Introduction

Perennial pasture is an agricultural system with significant 
potential for carbon (C) sequestration (Silveira et al. 2020). 
Increasing perennial pastures throughout the world (Cavero 
et al. 2017; Pozo et al. 2017; Djaman et al. 2020) can seques-
ter more  CO2 from the atmosphere (Liu et al. 2011; Guan 
et al. 2016) and further mitigate global warming (Chan et al. 
2010; Liu et al. 2011; Carmona et al. 2020a). Agronomic 
measures, such as irrigation, fertilization and tillage (Bhat-
tacharyya et al. 2013; Guan et al. 2016), are usually used to 
increase the crop productions, which often encourages more 
atmospheric C dioxide to be stored in plant biomass (Cavero 
et al. 2017; Zhang et al. 2021b), however, these agronomic 
measures inevitably influence the C sequestration potential 
in the soil-plant systems (Wang et al. 2010; Sun et al. 2013). 
The C retention in the soil-plant systems is often considered 
an effective agent to estimate the C sequestration potential 
(Reeder and Schuman 2002; Koteen et al. 2011; Carmona 
et al. 2020b). Generally, the C retention in the soil-plant 
systems is assessed by the C in plants and the changes of 
soil C storage (Olson 2013). Previous studies have shown 
that three-years strip-tillage (Al-Kaisi et al. 2005) and irri-
gation within a year (Chandel et al. 2021) lead to higher 
soil organic C (SOC). These demonstrate that agronomic 
measures possibly influence the C retention in the soil-plant 
systems through changing plant biomass (Xiao et al. 2015; 
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Djaman et al. 2020; Wang et al. 2021) and soil C storage in 
a short term (Al-Kaisi et al. 2005; Wang et al. 2010; Chandel 
et al. 2021).

Partial root-zone drying (PRD) is a water-saving irriga-
tion technique and it can save irrigation water with a mini-
mum impact on crop productivity (Shahnazari et al. 2008; 
Abboud et al. 2019; Mehrabi and Sepaskhah 2019; Zhang 
et al. 2021a). This water-saving technique has been widely 
applied to the production of many densely planted crops in 
arid and semiarid regions, such as potato (Solanum tubero-
sum) (Shahnazari et al. 2008), alfalfa (Medicago sativa) 
(Xiao et al. 2015; Zhang et al. 2021b; Wang et al. 2021), 
tomato (Lycopersicon esculentum) (Mingo et al. 2004) and 
winter wheat (Triticum aestivum) (Mehrabi and Sepaskhah 
2019). PRD has been found to improve the total root length 
of rice (Oryza sativa) (Fang et al. 2018), the quality and 
productivity (Xiao et al. 2015; Wang et al. 2021), root bio-
mass and branches of alfalfa (Li et al. 2020), and reduce the 
stomatal conductance of winter wheat (Triticum aestivum) 
(Mehrabi and Sepaskhah 2019). In addition, a few studies 
have used pot experiment to examine the effect of PRD on 
C retention in the soil-plant systems of annual crops, such 
as potato (Wang et al. 2010) and tomato (Sun et al. 2013), 
and these studies have found that PRD can decrease the C 
retention in the soil-plant systems of annual crops (Wang 
et al. 2010; Sun et al. 2013). Plant roots are important parts 
to sequester C, in which the root systems of perennial crops 
survive for many years, while the roots growth of annual 
crops are usually observed in one growth season. Thus, the 
potential of sequester C may be different between perennial 
crops and annual crops. The perennial crops have been found 
to have more sustainability and greater potential to sequester 
C than annual crops (Chan et al. 2010; Pozo et al. 2017) 
because the root system of perennial crops survive for many 
years. However, whether PRD influences C retention in soil-
plant systems of perennial crops is not well documented.

Alfalfa is a perennial crop with high yield and good qual-
ity for livestock (Deng et al. 2014; Djaman et al. 2020), and 
this crop also improves soil nitrogen content because of its 
nitrogen-fixing effect (Guan et al. 2016; Pozo et al. 2017). 
Alfalfa is widely grown in North America (Picasso et al. 
2019), South America (Pozo et al. 2017), Asia (Xiao et al. 
2015), Europe (Cavero et al. 2017), Africa (Li et al. 2020), 
and Oceania (Greenwood et al. 2009) and covers approxi-
mately 2.380 ×  107 ha worldwide (Xie et al. 2021). These 
large alfalfa pastures are vital to sequester  CO2 from the 
atmosphere (Guan et al. 2016). Irrigation is often required to 
maintain high alfalfa yield because alfalfa commonly suffers 
from water stress in arid and semiarid regions (Djaman et al. 
2020; Wang et al. 2021; Pozo et al. 2017). PRD has been 
found to improve the water use efficiency of alfalfa plants 
(Xiao et al. 2015; Li et al. 2020; Wang et al. 2021), and 
increase the C concentration in alfalfa roots and decrease the 

soil bulk density (Zhang et al. 2021a), while it has no effect 
on the C concentration in alfalfa leaves and stems (Zhang 
et al. 2021b). Therefore, more studies are needed to verify 
whether PRD influences the C retention in the soil-plant 
systems of alfalfa, which can provide more information for 
extension of PRD in alfalfa production, and present a pattern 
of PRD influencing the C retention in the soil-plant systems 
of perennial crops.

This study considers alfalfa as a focal crop to investigate 
the effects of PRD on the C in alfalfa plants and soil C stor-
age, and further examine the PRD in relation to the C reten-
tion in the soil-plant systems of perennial crops through a 
2-year field experiment. Here, this study hypothesizes that 
(1) PRD increases the C in alfalfa plants because PRD can 
increase alfalfa root biomass and C concentration (Zhang 
et al. 2021b); (2) PRD decreases the soil C storage of alfalfa 
pasture because PRD can decrease soil bulk density in alfalfa 
pasture (Zhang et al. 2021a); and (3) PRD decreases the C 
retention in the soil-plant systems of alfalfa because PRD 
can decrease the C retention in the soil-plant systems of 
annual crops (Wang et al. 2010; Sun et al. 2013).

Materials and methods

Experimental site description

The field experiment was conducted at Huangyang Farmland 
Station (37°42′ N, 102°48′ E, elevation 1710 m) during the 
period of 2017–2019, and this station was located in Wuwei 
city of Gansu Province, China. The climate at this station 
is typical continental temperate, similar to Dwa with the 
characteristics of snow, winter dry and hot summer in Köp-
pen-Geiger Climate Classification. Based on meteorological 
data from 1996 to 2015, the average annual temperature and 
annual precipitation were 9 °C and 175 mm, respectively, 
and the mean annual evaporation was 2000 mm. 80% of the 
precipitation occurred from June to September. According 
to the Chinese soil classification system (Gong 2001), the 
soil type was medium loam, similar to irragric anthrosols in 
the World Reference Base for soil resources. This soil type 
is characterized by soil bulk density with 1.49 ± 0.05 g  cm−3, 
and field capacity with 1.49 ± 0.05 g  cm−3. In addition, the 
wilting point by weight was 0.0805 ± 0.0003 g  g−1. The basic 
soil chemical properties in the experimental field were meas-
ured as follows: pH was 8.20, and total N, P, K were 0.86, 
1.34, 11.92 (g  kg−1), respectively; soil organic carbon was 
12.90 (g  kg−1), and hydrolysable N, Olsen-P and exchange-
able K were 33.50, 28.39, 253.18 (mg  kg−1), respectively 
(Zhang et al. 2021a, b).

During the experiment, the maximum temperature, mini-
mum temperature, average temperature and average monthly 
precipitation in 2018 and 2019 were collected from the 
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Wuwei meteorological station and are shown in Table S1. 
The Wuwei meteorological station is 36 km away from the 
Huangyang Farmland Station. The maximum temperatures 
were 40.7 °C and 35.0 °C, average temperatures were 7.7 °C 
and 8.5 °C, and annual precipitations were 263.4 mm and 
206.6 mm in 2018 and 2019, respectively. The total precipi-
tation during the growing seasons was 133.5 mm in 2018 
and 172.5 mm in 2019, most of which primarily occurred 
from April to August.

Experimental design

The field experiment included two factors (two irrigation 
modes and four irrigation volumes) in a split-plot design. 
Irrigation modes were regarded as main factors, and irriga-
tion volumes were regarded as subfactors. The two irrigation 
modes were PRD and conventional furrow irrigation (CFI).

Determination of irrigation volumes

The irrigation volumes were determined by alfalfa potential 
evapotranspiration (ETc), and they were 70% ETc  (I1), 85% 
ETc  (I2), 100% ETc  (I3) and 115% ETc  (I4). Because PRD 
treatment received 50% of the irrigation water volume of 
CFI at each irrigation event, this study designed the lowest 
irrigation volume as 70% ETc (Zhang et al. 2021b), which 
can prevent the effects of excessive drought on alfalfa in 
plots with PRD. ETc was quantified by the Penman-Mon-
teith formula as ETc = Kc ×  ET0 (Allen et al. 1998), where 
Kc was crop coefficient and  ET0 was the average value of 
potential evapotranspiration over 20-years. The potential 
evapotranspiration for each year was calculated with climatic 
data from 1996 to 2015, which were collected from the local 
meteorological station. The Kc was 0.88 for alfalfa (Xiao 
et al. 2015). The ETc was estimated to be 943 mm at the 
experimental site during the whole alfalfa growing season.

Construction of furrows and ridges

This field experiment included 8 treatments: PRD-I1, PRD-
I2, PRD-I3, PRD-I4, CFI-I1, CFI-I2, CFI-I3, and CFI-I4. The 
irrigation volumes during 2018–2019 are shown in Table S2, 
in which total water volumes of 1525 mm and 3051 mm 
were irrigated in PRD and CFI conditions in 2018, and total 
water volumes of 1744 mm and 3488 mm 2019 were applied 
to PRD and CFI conditions during 2019. PRD is usually 
practiced by alternate furrow irrigation in the field referring 
to previous studies (Xiao et al. 2015; Zhang et al. 2021a). 
The flat experimental field in alternate furrow irrigation was 
converted into many furrows and ridges, in which furrows 
were used to irrigate water and ridges were used to grow 
crops. All furrows were classified into an odd number group 
and an even number group. In PRD conditions, irrigation 

was conducted in odd number furrows at the first irrigation 
time, and it was conducted in even number furrows at the 
subsequent irrigation time (Zhang et al. 2021b). In contrast, 
irrigation was conducted in each furrow at each irrigation 
time in CFI condition.

Since the household contrast responsibility system was 
implemented in the 1980s in China, the area size of alfalfa 
pasture parcels has ranged from 1000 to 5000  m2 in Wuwei 
city of Gansu Province, China (Qu et al. 1995; Zhang et al. 
2021a). The household survey showed that most alfalfa pas-
ture parcels were 1000–4000  m2. Thus, this study selected 
a about 3500  m2 (89 m × 39 m) cropland to establish the 
experimental field. The experimental field was divided by 
two buffer zones with a width of 1 m into three blocks as 
three replications. Each block with a size of 89 m × 13 m was 
divided into 8 subplots, and a 1 m wide isolation belt was set 
up among the subplots to avoid lateral water transmission 
(Wei et al. 2016). Each subplot had a length of 11 m and a 
width of 10 m, and it was equipped with 13 ridges and 14 
furrows. The ridges were approximately 0.5 m apart which 
was determined in previous study (Zhang et al. 2021a), and 
carried out a pre-experiment to ensure the soil dry-wet cycle 
in PRD truly occurred. The length, width and height of each 
ridge were 10, 0.5 and 0.2 m, respectively. The length of 
each furrow was 10 m, and its top width, bottom width and 
depth were 0.3, 0.25 and 0.2 m, respectively. Each subplot 
was surrounded by high ridges that were 30 cm wide and 
30 cm tall to avoid surface runoff. There were 24 subplots 
in total.

Establishment of alfalfa pasture

On March 25th, 2017, the field was plowed, harrowed, and 
rolled, in which the trash and roots were cleared to ensure 
the uniformity of the experimental field. According to the 
experimental design, 24 subplots were established. On April 
7th, 2017, the same amount of water (40 mm) was irrigated, 
and 75 kg  ha−1 urea (N 46%) and 650 kg  ha−1 calcium super-
phosphate  (P2O5, 15.5%) were applied in each subplot. On 
April 8th, 2017, the furrows and ridges were manually estab-
lished in each subplot, and a hole-sowing machine was used 
to sow alfalfa seeds in two rows at each ridge. The distance 
between two rows was 30 cm, and the distance between 
two holes was 15 cm, in which the 8–10 alfalfa seeds were 
sown in each hole and the sowing depth of seeds was 3 cm. 
Alfalfa variety was “8920-FM” from Canada, which had 
been widely planted in the experimental region with good 
quality and high yield.

Conduction of partial root‑zone drying

Irrigation water was delivered from the well with an elec-
trical pump and was stocked in a water tank. An 80 mm 
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diameter flexible hose with a flow meter and switch at the 
end of this flexible hose was used to move water to each 
subplot, which ensured the approximate consistency of water 
at each subplot. This flexible hose was moved to the next 
subplot when one subplot was irrigated according to the 
experimental design.

The irrigation times were determined by the critical water 
requirement stage of alfalfa and the experience of local farm-
ers. The irrigation times during the period of 2018–2019 
were shown in Table S3, in which irrigation times were 8 
times at each experimental year. In 2018 and 2019, alfalfa 
pastures were irrigated at the re-greening stage after win-
ter, and the next irrigation events were conducted after each 
harvest and the next branch stage, which can ensure the 
occurrence of the dry-wet cycle of soils in PRD and healthy 
growth of alfalfa in CFI. The harvest time was performed 
when approximately 10% of alfalfa branches were blooming 
in most subplots (Djaman et al. 2020). If extreme precipita-
tion occurred during the experiment, the irrigation schedule 
was delayed by one week to ensure that PRD truly occurred 
(Wang et al. 2021). The alfalfa pastures were treated with 
pesticides to control weeds and aphids, and fungal diseases, 
and these treatments were performed in accordance with the 
local farmers from 2017 to 2019.

Method of measuring soil water content

The main effect of PRD of crops is the alternated spatially 
and temporally to produce wet-dry cycles in the root sys-
tems of plants (Shahnazari et al. 2008), and the changes of 
soil water content is the basic way to judge the PRD truly 
occurred. The soil water content was monitored at 10-day 
intervals, with 20-cm depth increments of the vertical soil 

layer to a depth of 200 cm because the perennial alfalfa roots 
in the study regions were found to be over 100 cm (Clément 
et al. 2022). In each subplot, a soil auger with a diameter of 
4 cm and height of 20 cm was used to randomly collect soil 
samples in odd and even furrows, respectively, with three 
replicates in odd and even furrows in each subplot. Each hole 
created by soil auger was filled quickly with experimental 
field soil to avoid water infiltration. The three soil samples 
from the same soil layer were mixed as a fresh composite 
soil, and this fresh composite soil was weighed immediately 
and then put into an aluminum box with known weight, car-
ried back to the laboratory, and dried at 105 °C to reach a 
constant weight. The aluminum boxes with dry composite 
soil were weighed again. The soil water content was deter-
mined by dividing the decrement of dry composite soil with 
the fresh composite soil. The soil water content was calcu-
lated by averaging the odd and even furrows and is shown 
in Fig. 1 in PRD and CFI.

Plant and soil sampling

Since alfalfa is a perennial crop, the sampled roots impacted 
the next root sampling and the accuracy of shoot biomass. 
Zhang et al. (2021a) proposed a framework to collect plant 
root and soil samples in alfalfa pastures in field (Fig. 2), 
which can avoid the effect of first root and soil sampling 
on the next sampling. In this framework, three quadrats of 
1 m × 1 m were placed along the diagonal of each subplot 
for sampling alfalfa shoots, and these quadrats were 0.5 m 
away from the boundary of the subplot. For each quadrat to 
sample alfalfa shoots, 6 paired areas were correspondingly 
placed to sample roots and soils, in which two areas along 

Fig. 1  Seasonal variations in soil water content as affected by irriga-
tion modes and irrigation volumes in 2017 (a), 2018 (b) and 2019 (c). 
PRD partial root-zone drying, CFI conventional furrow irrigation, I1 

70% of alfalfa evapotranspiration, I2 85% of alfalfa evapotranspira-
tion, I3 100% of alfalfa evapotranspiration, I4 115% of alfalfa evapo-
transpiration, FC field capacity, WP wilting point
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the diagonal were used in each year. A quadrat with a size 
of 25 × 25  cm2 was used to collect root and soil samples.

More root biomass contributes to C stabilization in peren-
nial pasture (Rasse et al. 2005) and the 2-year alfalfa pasture 
has a relatively steady yield (Guo et al. 2005; Xiao et al. 
2015). Thus, this study sampled the plants and soils from 
2018 to 2019 to quantify the C retention in the soil-plant 
systems of alfalfa. The shoots were harvested 4 times in 
2018–2019 (Table S4), while roots and soils were sampled 
at the last shoot harvested in a growing season. Root and soil 
samples were collected intermittently by a cube soil column 
(25 × 25 × 20  cm3) at 20 cm intervals, which ranged from 
0 to 100 cm. First, the cube soil column was screened out 
garbage and stones and then divided into root samples and 
soil samples by a 2 mm sieve; second, all root samples from 
two soil cube columns were mixed as the root composite 
samples, and soil samples at the same layer from two cube 
columns were mixed as the soil composite samples at dif-
ferent soil layers. The shoots, roots and soil samples were 
stored at 4 °C until analysis. In addition, the soil profile 
produced by cube soil columns were used to collect soils for 
analyzing soil bulk density.

Sample analysis

The alfalfa shoots were divided into leaves and stems, in 
which the titbit was classified as leaves. Root samples were 
carefully washed with tap water three times and then washed 
with deionized water once. Leaf, stem and root samples were 
dried at 65 °C to reach a constant weight. Dried samples 
were ground into a pounder and sieved with a 1 mm sieve, 
and then they were used to measure the C concentrations 

by the Dumas dry combustion method (Zhang et al. 2021b) 
in a Flash-II EA112 Elemental Analyzer (Thermo Fisher 
Scientific, Waltham, MA, USA). Soil samples for measuring 
soil bulk density were dried at 105 °C to a constant weight 
for weighing, and other soil samples were air-dried at room 
temperature to measure the soil total carbon (STC) and 
SOC concentrations. The STC concentration of the soil was 
determined by the same method as that used for the plants. 
The SOC concentrations were determined by dichromate 
heating-oxidation (Pang et al. 2019).

Calculations of C in plants and soil

The C in one plant organ was calculated by multiplying the 
C concentrations in one organ by the dry biomass of the cor-
responding organ (Zhang et al. 2021b). For example, the C 
in leaves was calculated according to the following equation:

where CSL is the C in leaves (kg  m−2), CCLi is the C concen-
trations in leaves (g  kg−1) in the i harvesting time, LDBi is 
the dry biomass of leaves (g  m−2) in the i harvesting time, 
and i is the number of harvesting times each year, n is the 
total harvesting time each year (n = 4). The C in alfalfa 
shoots consisted of the C in alfalfa leaves and alfalfa stems, 
and the C in alfalfa plants consisted of C in alfalfa shoots 
and C in alfalfa roots.

Calculation methods of soil C storage were different 
(Chan et al. 2010; Wendt and Hauser 2013). Some studies 
used the fixed depth to quantify the soil C storage (Ellert and 

(1)CSL =

n
∑

i=1

CCLi × LDBi

Fig. 2  Split-plot design and 
framework of first root and soil 
sampling, and the next sampling 
at each subplot during 2018 and 
2019
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Bettany 1995; Puget and Lal 2005; Chan et al. 2010; Deng 
et al. 2014; Paramesh et al. 2022), other studies used equiva-
lent soil mass to calculate the soil C storage (Wendt and 
Hauser 2013; Bhattacharyya et al. 2013). This study used the 
fixed depth method to calculate soil C storage, either STC or 
SOC storage, because soil C storage is usually considered to 
be over-estimated with equivalent soil mass method (Wendt 
and Hauser 2013). Here, STC was considered as an example 
to present a calculated process of soil C storage.

where STCs is the STC storage (kg  m−2), j represents the 
number of soil layers (0–20, 20–40, 40–60, 60–80, 80–100), 
n represents the total number of soil layers (n = 5), BDj is the 
soil bulk density (g  cm−3), which was calculated by divid-
ing the weight of the dry soil by the volume of each core 
occupied by soil at depth j, STCc j is the STC concentra-
tion (g  kg−1) at depth j, Dj is the thickness of the soil layers 
(20 cm), and 0.1 represents the unit conversion factor. The 
soil inorganic C (SIC) fractions were calculated as the dif-
ference between STC and SOC, either for C storage or C 
concentration calculations.

The changes of soil C storage is considered to estimate 
the soil C retention (Olson 2013). Thus, the difference in 
soil C storage and C in alfalfa plants between CFI and PRD 
conditions can be used to estimate the effect of PRD on the 
C retention in the soil-plant systems of alfalfa (Wang et al. 
2010; Sun et al. 2013).

Statistical analyses

Data were checked for normal distribution and homogene-
ity in 2018–2019, respectively. If necessary, the data were 
transformed to comply with the normality and homogeneity.

A two-way analysis of variance (ANOVA) was used to 
determine whether the irrigation modes, irrigation volumes, 
and their interactions affected the C in alfalfa shoots, C in 
alfalfa roots, C in alfalfa plants, soil bulk density, STC, SOC 
and SIC concentrations and storage, and the C retention in 
the soil-plant systems of alfalfa. In the model, the above-
mentioned variables acted as the response variables, irriga-
tion modes and irrigation volumes were regarded as the fixed 
factors, and the subplots were treated as random factors. 
When ANOVA indicated a significant difference, multiple 
comparisons among treatments were performed using Tuk-
ey’s test at p = 0.05, which is usually used to compare the 
mean between groups with the same sample size. Two-way 
analysis of variance and multiple comparisons were con-
ducted using IBM statistics SPSS 24.0. The graphs were 
created in Origin 2021.

(2)STCs =

n
∑

j=1

BDj × STCcj × Dj × 0.01

Results

Effect of PRD on the C in alfalfa plants

The responses of C in alfalfa shoots, C in alfalfa roots, and 
C in alfalfa plants to irrigation modes and irrigation vol-
umes and their interaction were consistent between 2018 
and 2019. PRD had no effect on C in alfalfa shoots, but it 
significantly increased the C in alfalfa roots by 0.49% and 
0.16% in 2018 and 2019, and significantly increased C in 
alfalfa plants by 0.41% and 0.93% in 2018 and 2019, respec-
tively (p < 0.05). With the increase of irrigation volume, C 
in alfalfa shoots firstly increased from the  I1 condition to  I2 
condition and then remained stable. Irrigation volume had 
no effect on C in alfalfa roots and C in alfalfa plants. The 
interaction between irrigation modes and irrigation volumes 
also had no effect on the C in alfalfa shoots, C in alfalfa roots 
and C in alfalfa plants (Fig. 3).

Effect of PRD on the C in soils

Effect of PRD on the soil bulk density

The soil bulk density in PRD conditions were 17.87% and 
14.50% lower than that in CFI conditions during 2018 and 
2019, respectively (p < 0.05). Irrigation volumes did not sig-
nificantly influence the soil bulk density in 2018 and 2019 
(Fig. 4).

The soil bulk density was the highest in combination of 
CFI and  I4, and was the lowest in combination of PRD and 
 I1 in 2018, PRD and  I2 in 2019.

Effect of PRD on the soil C concentration

The responses of the STC, SOC and SIC concentrations to 
irrigation modes, irrigation volumes and their interaction 
were consistent in 2018–2019 (Fig. 5). PRD significantly 
increased the STC and SOC, and significantly decreased SIC 
concentrations (p < 0.05). Irrigation volumes and the interac-
tion between irrigation modes and irrigation volumes had no 
effect on STC, SOC and SIC concentrations.

Effect of PRD on the soil C storage

The influences of irrigation modes, irrigation volumes, 
and their interaction on the STC, SOC and SIC storages 
were consistent between 2018 and 2019 (Fig. 6). PRD was 
found to significantly decreased the STC and SIC storages, 
whereas it significantly increased SOC storage during 2018 
and 2019 (p < 0.05). Irrigation volumes were found to have 
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no impact on the STC, SOC and SIC storages. The interac-
tions between irrigation modes and irrigation volumes were 
found to affect only SOC storage.

Effect of PRD on the C retention in the soil‑plant 
systems of alfalfa

The C retention in the soil-plant systems of alfalfa in relation 
to irrigation modes, irrigation volumes and their interaction 
was consistent between 2 years (Fig. 7). PRD significantly 
decreased the C retention in the soil-plant systems of alfalfa 
by 6.01% in 2018 and 12.95% in 2019 (p < 0.05), while 

irrigation volumes and the interaction between irrigation 
modes and irrigation volumes had no effect on the C reten-
tion in the soil-plant systems of alfalfa.

Discussion

Previous studies have found that PRD can decrease C reten-
tion in the soil-plant systems of annual crops (Wang et al. 
2010; Sun et al. 2013), and this study takes alfalfa as an 
example perennial plant to examine the effect of PRD on C 
retention in the soil-plant systems of perennial crops in the 

Fig. 3  Effect of irrigation 
modes, and irrigation volumes 
and their interaction on C in 
alfalfa shoots, C in alfalfa 
roots, and C in alfalfa plants 
in 2018–2019. IM irrigation 
modes, IV irrigation volumes, 
IM × IV interaction of irrigation 
modes and irrigation volumes. 
All the values are represented 
as the mean of three replicates 
with standard error. Lowercase 
letters indicate significant differ-
ences among the four irrigation 
volumes based on Tukey’s tests, 
and capital letters above the 
bars show significant differ-
ences between PRD and CFI 
(p < 0.05)

Fig. 4  Effect of irrigation 
modes, and irrigation volumes 
and their interaction on soil bulk 
density during 2018-2019. IM 
irrigation modes, IV irrigation 
volumes, IM × IV interaction of 
irrigation modes and irrigation 
volumes. Capital letters above 
the bars show significant dif-
ferences between PRD and CFI 
(p < 0.05)
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field, and finds that PRD leads to lower C retention in the 
soil-plant systems of alfalfa.

This study shows that PRD increases the C in alfalfa 
plants, supporting the first hypothesis, and this is also 
reported in the effect of PRD on C in tomato (Wang et al. 
2010), and these indicates that PRD can increase the C in 
plant of perennial and annual crops. Higher C in alfalfa 
plants is ascribed to higher alfalfa root biomass. Furrows 
and ridges can develop different soil surface configurations, 
in which PRD can greatly induce the initiation of second-
ary roots (Abrisqueta et al. 2008; Shahnazari et al. 2008; 
Wang et al. 2010), and enables alfalfa to produce more root 
systems, resulting in higher alfalfa root biomass (Wang et al. 
2010; Sun et al. 2013; McNally et al. 2015). Low irrigation 
volumes cannot meet the requirement of alfalfa for water 
(Xiao et al. 2015; Zhang et al. 2021b), which causes the 
relatively lower C in alfalfa shoots when the irrigation vol-
ume is below 85% of ETc. However, alfalfa shoot biomass 
remains relatively stable when irrigation volumes are over 
85% of ETc (Xiao et al. 2015). Correspondingly, the C in 
alfalfa shoots remains stable when the irrigation volumes 
are over 85% of ETc.

This study also shows that PRD leads to lower STC 
storage, which is consistent with the second hypothesis 
and similar to previous studies (Wang et al. 2010; Sun 
et al. 2013). The STC storage consists of SOC and SIC 
storage (Pang et al. 2019) and is dependent on the trade-
off between SOC storage and SIC storage. SOC and SIC 
storage rely on their concentrations and soil bulk density 
(Pang et al. 2019). In this study, PRD leads to lower soil 
bulk density, which might be caused by three mechanisms: 
first, the repeated cycling of soil wetting and drying in 
PRD is beneficial to increase the number of soil micro-
organisms and their activities (Shahnazari et al. 2008; 
Sun et al. 2013), which contributes to better aeration and 
relatively higher soil porosity (Wang et al. 2010); second, 
the developed root system in PRD (Zhang et al. 2021b) 
often produces many macropores, which often encour-
ages soil to become loose (Fang et al. 2018; Zhang et al. 
2021a); third, constant water application in the CFI con-
dition develop higher mechanical constraint on the soils 
when compared to PRD conditions, which can decrease 
the soil porosity and impede the root elongation in CFI, 
leading to a higher soil bulk density in CFI conditions than 

Fig. 5  Effect of irrigation 
modes, and irrigation volumes 
and their interaction on SOC 
concentrations, SIC concen-
trations and STC concentra-
tions during 2018–2019. IM 
irrigation modes, IV irrigation 
volumes, IM × IV interaction of 
irrigation modes and irrigation 
volumes. Capital letters above 
the bars show significant dif-
ferences between PRD and CFI 
(p < 0.05)
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in PRD conditions (Veen and Boone 1990). The higher 
SOC storage in PRD is a consequence of the balanced 
increase in organic matter input and the simultaneous 
decrease in soil bulk density. The higher input of organic 
matter in PRD can be explained in two ways. First, PRD 
increases the alfalfa root biomass (Zhang et al. 2021b) 
and further increases the input of organic matter to the 
soil through root turnover and rhizodeposition (Bai and Li 
2003; McNally et al. 2015). Second, a higher frequency of 
the dry-wet cycle can lead more roots to slough (Bai et al. 
2020), which contributes to an increase in organic matter 
in the soil by accelerating root decomposition (Wang et al. 

2010). In this case, the decrease in SOC storage caused 
by lower soil bulk density is weaker than the increase in 
SOC storage induced by higher soil organic matter, lead-
ing to higher SOC storage in PRD than in CFI. Wendt and 
Hauser (2013) have proposed that SOC storage is always 
over-estimated in soil with greater bulk density when SOC 
is estimated by equivalent soil mass method. In this study, 
the soil bulk density is higher in CFI than PRD, indicating 
that SOC storage might be over-estimated in CFI, which 
in turn verify that higher SOC in PRD is valid and robust. 
Lower SIC storage in PRD is ascribed to soil bulk density 
and SIC concentration. SIC is more stable than SOC (Pang 

Fig. 6  Effect of irrigation 
modes, and irrigation volumes 
and their interaction on SOC 
storage, SIC storage and STC 
storage during 2018–2019. IM 
irrigation modes, IV irrigation 
volumes, IM × IV interaction of 
irrigation modes and irrigation 
volumes. Capital letters above 
the bars show significant dif-
ferences between PRD and CFI 
(p < 0.05)

Fig. 7  Effect of irrigation 
modes, and irrigation volumes 
and their interactio on the C 
retention in the soil-plant sys-
tems of alfalfa 2018–2019. IM 
irrigation modes, IV irrigation 
volumes, IM × IV interaction of 
irrigation modes and irrigation 
volumes. Capital letters above 
the bars show significant dif-
ferences between PRD and CFI 
(p < 0.05)
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et al. 2019), and it mainly accumulates as primary carbon-
ates and secondary carbonates. In PRD, the lower SIC 
concentrations may be related to higher SOC concentra-
tions. Previous studies have shown that higher SOC con-
centrations produce more organic acids, mainly fulvic acid 
and humic acid, and these organic acids accelerate SIC 
decomposition into atmospheric  CO2 (Yang et al. 2021). 
In this study, the trade-off between SOC storage and SIC 
storage led to PRD decreasing STC storage.

This study further shows that PRD results in lower C 
retention in the soil-plant systems of alfalfa, which is in 
accordance with the third hypothesis and is also reported 
in soil-plant systems of annual crops (Wang et al. 2010; 
Sun et al. 2013). These indicate that PRD can decrease the 
C retention in the soil-plant systems of annual crops or 
perennial crops. The C in alfalfa plants in PRD were 0.41% 
and 0.93% more than that in CFI in 2018 and 2019, respec-
tively; however, the STC storage in PRD were 6.59% and 
14.03% (Fig. 6) lower than that in CFI in 2018 and 2019, 
respectively. In this case, the decrease in STC storage in 
PRD is larger than the increase in the C in alfalfa plants of 
the C retention in the soil-plant systems of alfalfa, imply-
ing that PRD is disadvantageous to C retention in the soil-
plant systems of alfalfa.

Many previous studies have verified that PRD can be 
applied to alfalfa production because it can save irriga-
tion water and maintain aboveground biomass in arid and 
semiarid regions (Xiao et al. 2015; Zhang et al. 2021b), 
whereas the findings of this study indicate that PRD is not 
a sustainable agricultural practice for alfalfa production in 
terms of C sequestration.

Although PRD leads to higher C in alfalfa plants, it 
leads to lower C retention in the soil-plant systems of 
alfalfa. The microbial and enzyme activities are impor-
tant to soil C turnover. Thus, how PRD affects the micro-
bial and enzyme activities in alfalfa pasture are needed to 
examine for disclosing the mechanism of PRD leading to 
lower soil C storage.

Conclusions

This study used a 2-year field experiment to investigate 
the effect of PRD on C retention in the soil-plant sys-
tems of alfalfa, and have found that PRD increased C in 
alfalfa plants, while it decreased STC storage. The trade-
off between C in alfalfa plants and STC storage leads to a 
decrease in C retention in the soil-plant systems of alfalfa in 
PRD, which indicates that PRD can encourage more soil C 
to be lost in field, in contrast to CFI. These results presented 
a pattern of PRD influencing C retention in the soil-plant 
systems of perennial plants, and suggested that PRD was 

disadvantageous to C retention in the soil-plant systems of 
perennial plants in the field.
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