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Abstract
Plant-specific NAC (NAM, ATAF, and CUC2) transcription factors (TFs) are a large gene family in plants that have been 
shown to play important roles in regulating many developmental processes and abiotic stress resistance. Here, a total of 113 
Medicago sativa NAC (MsNAC) TFs, known as MsNAC001 to MsNAC113, were identified and divided into 15 distinct 
subgroups. A comprehensive bioinformatics analysis of the MsNAC TFs is presented, including phylogenetic relationships, 
membrane-bound, and conserved motifs. Fourteen MsNAC genes grouped into stress-related subgroup were isolated, and 
the cis-elements and potentially biological functions of these genes were further investigated. Coupled with expression 
analysis and qRT-PCR testing, differential expression profiles over time in response to drought and salinity treatments were 
observed. In transgenic yeast, overexpression of MsNAC001 and MsNAC058 increased tolerance to salt (both) and drought 
(MsNAC058) stresses. Our findings will provide a starting point for the functional investigation and application of this gene 
family for crop improvement, especially in legume species.

Keywords  Medicago sativa · NAC transcription factor · Phylogenetic relationships · Membrane-bound · Abiotic stress · 
Transgenic yeast

Introduction

Agricultural yields are affected by the environment in which 
the crop is exposed during development. Stress events pose 
a serious challenge for agricultural production around the 
world, causing annual losses estimated at billions of dollars 

(Mittler and Blumwald 2010). Stress adaptation is a complex 
event, as plants may be affected by stresses that occur at 
different stages of growth concurrently (Wang et al. 2003). 
To cope with stresses by surviving and completing their life 
cycles, plants have evolved complex adaptation and genetic 
mechanisms that regulate gene expression by tight transcrip-
tional control and accurate signaling.

Transcription factors (TFs) are proteins that regulate vari-
ous plant processes through binding specific to cis-regula-
tory sequences in the promoters of target genes (Puranik 
et al. 2013). The NAC (NAM, ATAF, and CUC) protein 
family is one of the largest groups of plant-specific TFs. 
The NAC TFs were originally identified from consen-
sus sequences from petunia NAM, Arabidopsis thaliana 
ATAF1 and CUC2 (Nakashima et al. 2012). Typically, NAC 
TFs contain a highly conserved N-terminal DNA-binding 
domain, and research in Arabidopsis has indicated that there 
are at least five distinct types of DNA-binding domain for 
NAC TFs (Hisako Ooka et al. 2003). In addition to DNA 
binding, the unstable C-terminal transcriptional regulation 
region of NAC TFs can activate or repress transcription 

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0034​4-019-09984​-z) contains 
supplementary material, which is available to authorized users.

 *	 Yanrong Wang 
	 yrwang@lzu.edu.cn

 *	 Wenxian Liu 
	 liuwx@lzu.edu.cn

1	 State Key Laboratory of Grassland Agro‑ecosystems; Key 
Laboratory of Grassland Livestock Industry Innovation, 
Ministry of Agriculture and Rural Affairs, Engineering 
Research Center of Grassland Industry, Ministry 
of Education, College of Pastoral Agriculture Science 
and Technology, Lanzhou University, Lanzhou 730020, 
People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00344-019-09984-z&domain=pdf
https://doi.org/10.1007/s00344-019-09984-z


	 Journal of Plant Growth Regulation

1 3

of multiple target genes (He et al. 2016; Le et al. 2011; 
Yamaguchi-Shinozaki amd Shinozaki 2005). In the crystal 
structure, the NAC domain of Arabidopsis ANAC019 (Ernst 
et al. 2004) and rice SNAC1 (Chen et al. 2011) revealed the 
existence of a new TF fold comprising a twisted anti-paral-
lel β-sheet enclosed by a few helical elements. Some NAC 
proteins, which comprise a ɑ-helical transmembrane (TM) 
motif, and are responsible for the anchoring to the plasma 
membrane, are classified as membrane associated and are 
referred to as NTL (NAC with Transmembrane Motif 1-like) 
TFs (Kim et al. 2010; Seo et al. 2008). Studies of NTL genes 
in Arabidopsis, rice, soybean, and maize indicated that most 
of the putative NTL genes are stress-responsive (Karanja 
et al. 2017; Kim et al. 2007, 2010; Li et al. 2016; Wang et al. 
2016). Thus, identification and functional characterization 
of novel NAC genes will be helpful for understanding the 
potential stress response mechanisms in plants.

Increasing lines of evidence suggest that NAC genes play 
important roles in various plant physiological and develop-
mental stages, including regulation of shoot apical meris-
tem formation and vascular cell differentiation (Grant et al. 
2010; Takada et al. 2001); adjacent embryonic, vegetative, 
and floral organs formation and separation (Mallory et al. 
2004); grain protein, and iron and zinc content improvement 
(Velu et al. 2014; Zhu et al. 2019); leaf senescence (Ma 
et al. 2018); lateral root development (Chen et al. 2018; Guo 
et al. 2005); secondary wall formation (Yoshida et al. 2013; 
Zhang et al. 2018); hormone signaling (Mao et al. 2017; 
Ren et al. 2018); and biotic and abiotic stress responses 
regulations (Nakashima et al. 2007; Shao et al. 2015; Song 
et al. 2011). Recently, many NAC genes have been identi-
fied to participate in plant responses to drought and salin-
ity stresses. Overexpression of Arabidopsis ANAC019, 
ANAC055, or ANAC072 genes in transgenic plants resulted 
in the improvement of drought tolerance and modulated the 
expression of drought, high salinity, and ABA (abscisic acid) 
stress-inducible genes (Tran et al. 2004; Xu et al. 2013). The 
Arabidopsis ATAF1 overexpression lines showed enhanced 
plant drought tolerance, and hypersensitive to high salinity, 
oxidative stress, ABA, and necrotrophic-pathogen infection 
(Wu et al. 2009). In transgenic rice, the ONAC022 gene was 
observed to increase drought and salinity tolerance through 
modulating an ABA-mediated pathway (Hong et al. 2016). 
SNAC1-overexpressing cotton plants significantly increased 
drought and salt tolerance, transgenic cottons showed more 
vigorous growth, especially in terms of root development 
(Liu et al. 2014). NAC6/SNAC2 and OsNAC10 are drought-
tolerance genes that belong to the ATAF subfamily, and 
overexpression of these genes enhanced drought and salt 
tolerance, and the rice grain yield under field drought con-
ditions were improved in the OsNAC10 transgenic rice 
(Hisako Ooka et al. 2003; Hu et al. 2006; Jeong et al. 2010). 
In wheat, overexpression of TaNAC47 in Arabidopsis can 

enhance the drought, freezing, and salt resistance by activat-
ing the expression of downstream genes (Zhang et al. 2016). 
Considering their significance in various plant physiological 
and developmental stages, genome-wide analysis was per-
formed to identify NAC TFs in many plants such as Arabi-
dopsis (117 NAC genes) (Nuruzzaman et al. 2010), Oryza 
sativa (151) (Nuruzzaman et al. 2010), Medicago truncatula 
(97) (Ling et al. 2017), Solanum tuberosum L. (110) (Singh 
et al. 2013), Glycine max (152) (Le et al. 2011), Nicotiana 
tabacum (152) (Rushton et al. 2008), Brachypodium dis-
tachyon (101) (You et al. 2015), Manihot esculenta Crantz 
(96) (Hu et al. 2015), Panicum virgatum (251) (Yan et al. 
2017), and so on.

Legumes (Fabaceae) as the second most important fam-
ily of plant crops, generating approximately one-third of the 
world’s primary crop yield (Benedito et al. 2008). Alfalfa 
(Medicago sativa), as one of the most-grown perennial for-
age legume worldwide, has high yield, nitrogen fixation 
capacity, and choice nutritional profiles (Min et al. 2017, 
2019; Zhang et al. 2017). Recently, The Cultivated Alfalfa 
at the Diploid Level (CADL) Genome Blast Sever (https​
://www.alfal​fatoo​lbox.org/abt_dobla​st/Home.gy?filte​rword​
=DOBLA​ST&funct​ion=funct​ion0) has been made avail-
able to the public, which provides an excellent opportunity 
for genome-wide analysis. To date, no overall analysis of 
the NAC gene family in alfalfa has been reported, except by 
Yong Xin Wang, who found a drought stress response gene 
named novel Medicago sativa NAC (Wang 2013). Given the 
significance of NAC TFs in the regulation of plant develop-
ment, growth, and adaption to the abiotic stress, a genome-
wide systematic analysis of alfalfa NAC family was per-
formed. Finally, 113 MsNAC genes were identified and their 
phylogeny, membrane-bound structures, conserved motifs, 
and expression profiles were comprehensively studied. The 
expression profiles of MsNAC genes under drought and salt 
treatments were examined by real-time reverse transcrip-
tion PCR (qRT-PCR). Furthermore, heterologous expres-
sion experiments in yeast cells indicated that MsNAC001 and 
MsNAC058 are key candidate genes for improving abiotic 
stress tolerance. The detailed results presented here would 
provide the insights for the further functional investigation 
and application of this gene family for crop improvement, 
especially in legume species.

Materials and Methods

Plant Growth, Treatments, and Tissues Collection

Alfalfa seeds (cultivar Zhongmu No. 1) were scarified, ster-
ilized, and grown under greenhouse conditions (27/23 °C 
14-h light/10-h dark, and 60%; relative humidity). Uniform 
seedlings were selected and hydroponically grown in an 

https://www.alfalfatoolbox.org/abt_doblast/Home.gy%3ffilterword%3dDOBLAST%26function%3dfunction0
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aerated nutrient solution as described by Liu et al. (2017). 
For expression profiling of MsNAC genes under dehydration 
and salinity stresses, seedlings were transferred and grown in 
20% PEG 6000 (dehydration) and 180 mM NaCl (salinity) 
for abiotic stress. Samples were collected at 0-h, 4-h, 8-h, 
and 24-h intervals. To reduce the circadian rhythm effects, 
samples from the control, drought, and salt conditions were 
grown in parallel and harvested at the same time after 24 h. 
Three independent roots were collected for each of the above 
treatments and were immediately frozen in liquid nitrogen 
and stored at -80 °C until used.

Database Mining and Identification of NAC Protein 
Family in Alfalfa

Searching for NAC genes in the alfalfa genome, 517 protein 
sequences encoding NAC TFs from Arabidopsis, Oryza, M. 
truncatula, and Glycine max were retrieved from Phytozome 
v12 (Goodstein et al. 2011). Then, these sequences were 
used to identify homologous peptides from alfalfa by using 
a Basic Local Alignment Search Tool algorithms (BLASTP) 
at CADL genome blast server. With the help of the PFAM 
databases (El-Gebali et al. 2018), all the potential MsNAC 
proteins identified from Hidden Markov Model (HMM) 
profile were searched, only if they contained the NAM 
domain (PF02365). Then the redundant sequences were 
removed using the decrease redundancy tool (web.expasy.
org/decrease_redundancy).

Phylogenetic Tree Construction and Conserved 
Motifs Identification

To investigate the evolutionary relationships among alfalfa 
and Arabidopsis, multiple sequence alignment was per-
formed using CluatalW2 program with default parameters. 
The software MEGA7 was employed to conduct the phylo-
genetic analysis by the NJ (neighbor-joining) method with 
1000 bootstrap replicates (Tamura et al. 2011). The con-
served motifs in full length NAC proteins were identified 
using Multiple Expectation Maximization for Motif Elici-
tation (MEME) program version 5.0.1, with the maximum 
number of motifs as 12 (Timothy et al. 2009). Moreover, the 
secondary structure of MsNAC domain was predicted by 
Promals3D web program (Lipman et al. 1989).

In Silico Sequence Analysis

The theoretical isoelectric point (pI) and molecular weight 
(Mw) of the MsNAC proteins were predicted using the Prot-
Param tool (http://web.expas​y.org/protp​aram/). The num-
ber of transmembrane helices (TMs) was predicted using 
TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/servi​ces/
TMHMM​/). Arabidopsis orthologs for alfalfa NAC proteins 

were identified using a BLASTP search against Arabidopsis 
proteins TAIR10 release (http://www.arabi​dopsi​s.org). The 
functional interacting networks of predicated stress response 
NAC proteins were integrated in STRING software with the 
confidence limits set at 0.400 (Franceschini et al. 2012).

Promoter cis‑Element Analysis

The 1.5 kb sequence upstream from the translation start site 
of the predicated 14 predicated stress-related MsNAC genes 
were obtained from the CADL Genome Blast Sever. The 
PlantCARE online database was used to analyze the putative 
stress or hormone-responsive cis-acting regulatory elements 
(Lescot et al. 2002).

Expressed Sequence Tag Retrieval and Function 
Prediction of 14 Stress‑Related MsNAC Genes

Expressed sequence tags (ESTs) corresponding to the 
NAC genes in alfalfa were isolated from the Alfalfa Gene 
Index and Expression Atlas Database database (http://plant​
grn.noble​.org/AGED/) using the BLAST program and the 
nucleotide sequences of MsNAC as queries. The expression 
data of different tissues were collected from two alfalfa phe-
notypes (Medicago sativa ssp. Sativa and Medicago sativa 
ssp. falcata). The MeV v4.9 software (http://www.mybio​
softw​are.com/) was used to normalize expression data and 
generate heatmap. Furthermore, the biological function of 
each putative MsNAC was accomplished via four public 
databases.

RNA Isolation and qRT‑PCR Analysis

Total RNA was isolated using Sangon UNIQ-10 column Tri-
zol total RNA extraction kit (TaKaRa, Dalian, China). RNA 
concentration test, DNase treatment, and cDNA synthesis 
were conducted according to previously described (Zhang 
et  al. 2018). Fourteen gene-specific primer pairs were 
designed using the Primer3 software for qRT-PCR analysis 
(Table S1) (Rozen and Skaletsky 2000), and their specific-
ity was confirmed by blasting the alfalfa CADL genome 
blast server. qRT-PCR reactions and data analysis were 
performed according to previous studies (Liu et al. 2017; 
Zhang et al. 2018). As an internal standard, the Medicago 
actin (AA660796) gene was selected to calculate the relative 
fold differences based on the comparative Ct method.

Expression Vector Construction and Stress Tolerance 
Tests of the Transgenic Yeast

Alfalfa (cultivar Zhongmu No. 1) cDNA was prepared 
using the above-mentioned method. The complete coding 
sequences of MsNAC001 and MsNAC058 were amplified 
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with specific primers (MsNAC001-F: CCG​GAA​TTC​
ATG​CAA​GGA​GCA​TTA​GAA​TT (EcoR I), MsNAC001-
R:CGGGA​TCC​TTA​CTT​GGG​CAG​GTA​CAT​AA (BamH 
I)) and (MsNAC058-F: CCG​GAA​TTC​ATG​CAA​GGT​GAA​
TTA​GAA​TT (EcoR I), MsNAC058-CGGGA​TCC​TCA​AAA​
TGG​CTT​TTG​TGG​GT (BamH I)), respectively. The coding 
sequences of MsNAC001 and MsNAC058 were cloned into 
yeast expression pYES2 vector (Invitrogen, Carlsbad, USA). 
Subsequently, the pYES2-MsNAC001, pYES2-MsNAC058, 
and pYES2 only (vector control) plasmids were introduced 
into yeast strain INVSc1 (Invitrogen, USA) using a lithium 
acetate procedure according to the pYES2 vector kit instruc-
tions. The transformants were then selected on SC medium 
devoid of uracil at 30 °C. For the drought and salt toler-
ance assay was performed according to previously described 
methods (Li et al. 2014).

Results and Discussion

Identification of the NAC Gene Family 
and Phylogenetic Relationship Analysis in Alfalfa

To gain insight into the accurate size of the MsNAC TFs 
in alfalfa, the alfalfa genome database was screened by 
HMM profile and BLAST searches using Arabidopsis, rice, 
M. truncatula, and soybean NAC sequences as queries. 
Finally, a total of 113 NAC proteins were identified and 
all of them were confirmed to contain the NAC domain or 
NAM domain. In prior study, an in silico analysis was per-
formed using RNA-seq data to reveal and systematize alfalfa 
TFs. Finally, 67 NAC TFs were identified (Postnikova et al. 
2014). The number of NACs identified in alfalfa was smaller 
than those in other plants, such as rice (151, genome size 
~ 372 Mb), Populus trichocarpa (163, ~ 443 Mb), soybean 
(152, ~ 978 Mb), and Arabidopsis (117, ~ 135 Mb), but big-
ger than Vitis vinifera (74, 487 Mb) and M. truncatula (97, 
360 Mb). The alfalfa genome size (800–900 Mb) (Hong-
Kyu et al. 2004) is approximately two points two times, one 
point six times, and nearly to that of the rice, Vitis vinifera 
and soybean genome, respectively, suggesting that there is 
no direct linkage between the number of NAC genes and 
the genome size in plants. Due to improper annotation, the 
existing identifies for MsNAC genes were highly disordered. 
Thus, a uniform nomenclature has been assigned to these 
113 MsNAC proteins according to their numeric sorting as 
follows: MsNAC001-MsNAC113. Among the 113 MsNAC 
TFs, the relative molecular weight ranged from 14.97 kDa 
(MsNAC048) to 95.578 kDa (MsNAC022), and the pIs 
varied from 4.13 (MsNAC002) to 9.77 (MsNAC080) with 
71 members showing pI < 7 and the remains with pI > 7 
(Table S2), indicating that these different NAC proteins 
may work under different conditions. The amino acids length 

ranged from 130 (MsNAC048) to 848 (MsNAC022) with 
an average of 353.3 aa. MsNAC048 is the smallest protein, 
with a NAM domain that appears to be truncated and lacks 
subdomains E at the N-terminal end (Fig. S1). To study the 
evolutionary relationships between MsNAC proteins and 
Arabidopsis, an unrooted NJ phylogenetic tree was created 
(Fig. 1), and the MsNACs were classified into A and B two 
major groups. These two groups were further divided into 10 
and 5 subgroups, respectively. Accordingly, to Ooka et al., 
Arabidopsis NACs were classified into two large groups, the 
MsNAC members of groups A and B showed high homology 
with the Arabidopsis NACs (Ooka et al. 2003).

Correlation Between Conserved Motif Analysis 
and Functional Predication

Previous studies have shown that the NAC proteins are 
characterized with a conserved DNA-binding region at the 
N-terminal, which is divided into five subdomains (A–E), 
and highly diversified C-terminal region that contains a tran-
scriptional regulatory domain (Ooka et al. 2003). A multiple 
sequence alignment of 113 MsNAC proteins and three repre-
sentative Arabidopsis NAC proteins (ANAC019, ANAC055, 
and ANAC072) was performed, and the results revealed that 
most MsNACs have the complete NAC domains (Fig. S1). 
However, some MsNACs such as MsNAC002, 048, 063, 
086, and 107 lack one or more conserved subdomains; such 
NAC proteins may be characterized as NAC-like proteins 
according to the description of these proteins in rice, potato, 
and B. distachyon (Nuruzzaman et al. 2010; Singh et al. 
2013; You et al. 2015).

Previously, there were 6, 10, and 12 subgroups for soy-
bean, poplar, and potato, respectively (Hu et al. 2010; Le 
et al. 2011; Singh et al. 2013). In this study, 12 conserved 
motifs were predicted to examine the diversity of MsNAC 
genes (Fig. S2), the observations in our study indicate that 
NAC proteins in alfalfa pose a relatively high diversity 
(Fig. S3). In general, MsNAC proteins with similar motif 
composition tended to cluster together. All MsNACs con-
tain at least one of the six main motifs (motif 2, 4, 1, 
5, 3, and 7) that represent the subdomains A, B, C, D, 
and E, respectively. We further predicted the secondary 
structure of conserved motifs corresponding to five subdo-
mains covering the entire NAC domain. All of them were 
found at the conserved N-terminal, but none in the diversi-
fied C-terminal ends, indicating that these motifs may be 
important for the function of NAC proteins, which is also 
found for NACs in potato (Ooka et al. 2003). Among the 
MsNACs in all groups, compared with subdomains B, C, 
and E, subdomains A and D were more tightly conserved, 
proving that the structure of A and D might have the most 
conserved and indispensable functions for MsNACs. It is 
worth noting that all MsNACs in group I shared motif 
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10, and were homologous to ANAC073, ANAC075, and 
ANAC088 in Arabidopsis, which are involved in second-
ary cell wall biosynthesis and DNA damage checkpoint, 
indicating that the motif 10 could be an important region 
in defining the function of these NACs in the process of 
cell wall biogenesis and DNA damage response. Recently, 
study has shown that the NAC domain monomer was char-
acterized with a twisted anti-parallel β-sheet that flanked 
with an N-terminal α-helix on one side and a short helix on 
the other side (Olsen et al. 2005). In this study, a β-sheet in 
subdomains A and B was also found to be packed against a 
α-helix (Fig. S4). Moreover, two α-helices and six β-sheets 
were predicted, which is also similar to previous reports 
(Ernst et al. 2004; Singh et al. 2013).

Membrane‑Bound MsNAC Subfamily

It has been established that NAC membrane-bound TFs 
(MTFs) have been implicated in plant response to abiotic 
stresses (Kim et al. 2010; Lee et al. 2012; Seo et al. 2008). 
The dormant form of membrane-associated NAC TFs is 
activated by degrading their cytoplasmic anchors and then 
enters the nucleus, where it regulates the expression of target 
genes (Kim et al. 2010). In this study, we identified 7 (6.2%) 
MsNAC proteins containing α-helical TMs by TMHMM 
server (Table 1). In soybean, 9 and 2 GmNACs have been 
predicted to contain single and two TMs, respectively (Le 
et al. 2011). On the other hand, only one TM was identified 
in Arabidopsis and rice NAC MTFs (Kim et al. 2007, 2010; 
Singh et al. 2013). In this study, 5 of the 7 identified MsNAC 

Fig. 1   Phylogenetic tree of NAC proteins from alfalfa and Arabi-
dopsis. The phylogenetic tree was constructed using MEGA7 by the 
neighbor-joining method with 1000 bootstrap replicates. The tree was 

divided into two (A and B) subfamilies comprising 15 smaller sub-
groups. Members of alfalfa and Arabidopsis are denoted by circles 
with red and blue, respectively (Color figure online)
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MTFs were found to contain a single TM, and the remain-
ing two (MsNAC039 and MsNAC080) contained two TMs. 
Like Arabidopsis, rice, soybean, and other model plants 
NAC MTFs, all the identified MsNAC MTFs in this study 
were located at the C-terminal, except MsNAC036, which 
contains a TM at its N-terminal (Fig. S5).

Furthermore, a phylogenetic tree of the NAC MTFs from 
alfalfa (7), Arabidopsis (18), rice (5), M. truncatula (8), 
soybean (11), and maize (7) was constructed to illustrate 
the evolutionary relationship between heterologous NTLs. 
Six clades were recognized, and of these, three (clades III 
and VI) were specific to the dicotyledonous species (Fig. 2), 
the inference was that the NTLs within a clade probably 
diversified and expanded after the monocot–eudicot split. 
The most (13) NTLs were clustered together in Clades V, 
followed by 11, 9, 9, 8, and 6 in Clade I, II, IV, III, and VI, 
respectively. A MEME-based analysis showed that MsNTLs 
clustered within one clade shared a similar kind of motif 
content, indicating functional similarities among members 
of the same subgroup (Fig. 2). Notably, all NAC MTFs in 
clades I and II shared the specific motif 6, in clades III, IV, 
V, and VI shared the specific motif 7, and it would be inter-
esting to further verify their functions using experimental 
approaches. Furthermore, a multiple sequence alignment 
verified that all NAC MTFs encoded the highly conserved 
NAC domain at their N terminus, in which five subdomains 
(A to E) were identified (Fig. S6). In Arabidopsis, the func-
tion of at least four NTLs (NTL4, NTL6, NTL8, NTL9, and 
NTL13/NTM2) has been proven to link external signals, 
such as osmotic, salt, and cold stresses (Le et al. 2011; Liang 
et al. 2015). In maize, NAC MTFs displayed a variety of 
both conserved and distinct functions in response to abiotic 
stress (Wang et al. 2016). Other studies also showed that 
NAC MTFs are activated by membrane-associated proteases 
in the endoplasmic reticulum by posttranslational modifica-
tions when plants suffer environmental stresses (Bhattacha-
rjee et al. 2017; Li et al. 2016). Thus, it is feasible that the 
MsNAC MTFs may play a significant role in nuclear locali-
zation and downstream stress-responsive gene expression 

that may serve as an adaptive strategy for legume plants to 
survive under adverse environmental cues.

Characterization of Abiotic Stress Response Related 
MsNAC Genes

Increasing evidence has suggested that phylogenetic analy-
sis can provide clues into the functional prediction, which 
could be subsequently prioritized for further planta func-
tional studies (Le et al. 2011; Van Ha et al. 2014; You et al. 
2015). Previous studies have reported that several NAC 
genes are well described in terms of their important roles in 
responses to abiotic stress (Nuruzzaman et al. 2013; Pascual 
et al. 2015; Shao et al. 2015). To further predict and distin-
guish the function of MsNAC genes, an NJ tree was con-
structed using 147 NAC TFs, including the 34 well investi-
gated plant NAC proteins at the molecular level (response 
to single dehydration and salinity, or multiple-stresses) and 
113 MsNAC proteins (Fig. S7, Table S3). As shown in Fig. 
S7, 22 (75.86%) of the 29 dehydration-related NAC genes 
and 20 (76.92%) of the 26 salinity-related NAC genes were 
clustered into one group with 14 MsNAC genes, indicating 
these MsNAC proteins might be involved in the alfalfa stress 
response. One of our main interests for performing phyloge-
netic analysis of MsNAC genes was to predicate their poten-
tial roles in response to dehydration and salinity in alfalfa 
that could be subsequently select candidate MsNAC genes 
that may respond to diverse environmental stress.

To further investigate our selected stress-related 
MsNAC proteins, four public databases were used to pre-
dict MsNAC protein annotations with an e-value cut-off of 
1e-10. The annotation results showed that these MsNAC 
proteins are possibly involved in hyperosmotic salinity, 
water deprivation, plant hormone signaling, and growth 
regulation (Table S4). Furthermore, the STRING softer 
was used to determine the functional and physical relation-
ships of 14 MsNAC proteins predicted to be stress related 
through an Arabidopsis association model (Fig.  3). Of 
these 14 MsNAC proteins, the homologous gene matches 
the highest bit score by default, which identified 8 (ATAF1, 

Table 1   Predicted membrane-
bound MsNAC proteins, 
their protein length, number 
of predicted TMHs, position 
of NAM domain, and 
transmembrane locates

Gene name Seq. ID Protein 
length 
(aa)

Number of 
predicted 
TMHs

NAM 
domain 
sequence

Transmembrane sequences

MSNAC028 MSAD_022233.t1 638 1 26–152 610–632
MSNAC029 MSAD_023548.t1 417 1 77–205 27–49
MSNAC034 MSAD_027023.t1 613 1 9–136 588–610
MSNAC037 MSAD_027503.t1 571 1 20–146 540–562
MSNAC039 MSAD_030599.t1 673 2 7–133 578–597, 651–670
MsNAC080 MSAD_099416.t1 523 2 19–144 348–370, 438–457
MsNAC100 MSAD_242157.t1 577 1 6–133 552–574
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Fig. 2   Phylogenetic relationships of membrane-bound NAC proteins 
from alfalfa with proteins from Arabidopsis, M. truncatula, rice, 
soybean, and maize. The phylogenetic tree was constructed using 

MEGA7 by the neighbor-joining method with 1000 bootstrap repli-
cates. The tree was divided into six phylogenetic subgroups according 
to the kinds of motif
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ATAF2, RD26, NAC019, NAC025, NAC027, NAC055, 
and NAP) high confidence interactive proteins involved 
in the NAC family networks in Arabidopsis. A previous 
study found that overexpression of ATAF1 in Arabidop-
sis increased plant sensitivity to ABA, salt, and oxidative 
stresses, and remarkably enhanced plant drought tolerance 
(Liu et al. 2016; Wu et al. 2009). A stress-responsive NAC 
(SNAC) subfamily comprises seven genes as following: 
ANAC019, ANAC055, RD26, ATAF1, ATAF2, ANAC102, 
and ANAC032, and it has been suggested that SNAC-A 
subfamily genes regulate the expression of abiotic stress-
responsive genes. For example, ANAC019, ANAC055, 
and RD26 were induced by drought, high salinity, ABA, 
and MeJA, plants individually overexpressing these genes 
showed a significant increase in salt or drought tolerance 
(Nakashima et al. 2012; Takasaki et al. 2015). The func-
tional annotations of MsNAC proteins were obtained based 
on other proteins with known biological functions, which 
provides a reference for predicting the potential regulatory 
roles of MsNAC proteins in alfalfa.

Characterization of Putative cis‑Regulatory 
Elements in the Stress‑Related MsNAC Genes

The cis-acting regulatory elements are specific motifs exist-
ing in the promoter regions of genes functioning as bind-
ing sites, which play important roles in response to stresses 
through regulate gene transcription in plant (Nakashima 
et al. 2014). In addition, phytohormones, such as ABA, 
salicylic acid (SA), ethylene (ET), and jasmonic acid 
(JA), are also essential for plant adaptation abiotic stresses 
(Santner and Estelle 2009; Wu et al. 2017). The − 1500 bp 
upstream promoter regions of MsNAC genes were scanned 
in the PlantCARE database, fifteen cis-acting elements were 
used in this study, including six stress-responsive (MBS, 
HSE, ARE, LTR, TC-rich repeats, and Box-W1) and nine 
hormone-responsive (TCA-element, ABRE, GARE-motif, 
CGTCA-motif, P-box, ERE, TATC-box, TGA-element, and 
TGACG-motif) cis-acting elements (Table S5). The analysis 
indicates that all these genes promoter regions contain at 
least two kinds of environmental stress signal responsive-
ness and three kinds of phytohormone-related cis-elements. 

Fig. 3   Protein interaction network for 14 stress-related MsNAC pro-
teins based on these orthologs in Arabidopsis. Red lines indicate 
proteins that are predicted to interact with more than four other NAC 

proteins. The highly matched seven ortholog NAC genes are showed 
in red ellipse (Color figure online)
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The number of cis-elements in the promoter regions of 
the MsNAC genes is variable. For example, MsNAC036 
and MsNAC040 promoter have 25 cis-elements, whereas 
MsNAC046 only contains ten cis-elements (Table S6).

Expression Analysis of Abiotic Stress‑Related MsNAC 
Genes in Various Tissues

Tissue-specific expression patterns are useful data as they 
can determine whether a gene plays a role in defining the 
precise nature of individual tissue. Several NAC genes have 
been demonstrated to play essential roles in regulating plant 
tissues development at different growth stages (Kusano et al. 
2005; Mitsuda et al. 2007; Yang et al. 2011). To investi-
gate the overlapping and tissue-specific expression profiles, 
the expression patterns of fourteen stress-related MsNAC 
genes in six tissues were analyzed using the public alfalfa 
gene expression atlas (Fig. 4). The heatmap showed that the 
expression patterns of two alfalfa varieties have a highly 
similarity, indicating these may possess the same transcript 
abundance between two alfalfas. Clustering analysis of the 
expression data indicates that MsNACs possess highly dis-
tinct transcript abundance in different tissues. Of these 14 
MsNAC genes, 5, 9, 10, 6, 4, and 6 MsNACs had high expres-
sion levels (value > 2.25) in leaf, flower, ES (elongating stem 
internodes), PES (post-elongation stem internodes), root, 
and nodule, respectively, in Medicago sativa ssp. Sativa. 
MsNAC004, MsNAC058, and MsNAC068 genes showed an 
overall coverage among the six tissues, suggesting that these 
genes might play a role in plant growth and development. 
Furthermore, some MsNAC genes showed tissue-specific 
expression patterns, as MsNAC033 and MsNAC058 in leaf; 

MsNAC005, MsNAC006, and MsNAC038 in the flower 
(Fig. 4), suggesting they might play key roles in specific tis-
sue development or function (Liu et al. 2014). This phenom-
enon was also observed for the NAC genes in other plants, 
such as Arabidopsis, rice, chickpea, and soybean (Fang 
et al. 2008; Le et al. 2011; Van Ha et al. 2014). Moreover, 
several studies have indicated that overexpression of tissue-
specifically expressed NAC genes can promote the develop-
ment of particular tissue, such as NAC1 promotes lateral root 
development in Arabidopsis (Xie et al. 2000). SND1 and 
VND7 are two Arabidopsis NAC domain TFs that are master 
regulators of secondary wall biosynthesis in fibers and ves-
sels, respectively (Zhong et al. 2010). Together, the tissue 
expression pattern of MsNAC genes identified in our study 
would provide useful information for further investigation 
of alfalfa development.

Validation of MsNAC Expression Profiles Under 
Abiotic Stress

Medicago truncatula as model plant has been selected 
to study functional genomics of legumes. Because of the 
sequence conservation between M. truncatula and alfalfa 
are relatively high, we downloaded the microarray data of 
homologous genes in M. truncatula, and evaluated their 
expression patterns under drought and salt treatments in root 
tissue (Fig. 5). Overall, expression of most MsNAC genes 
was significantly up-regulated under both treatments, and 
under different salt density (180 mmol and 200 mmol) treat-
ments MsNAC genes have similar expression patterns. For 
example, the M. truncatula homologous genes MsNAC004, 
-005, -006, -046, and -090 were up-regulated significantly 

Fig. 4   Heatmap representation 
and hierarchical clustering of 
the MsNAC genes in various 
alfalfa tissues. The transcript 
data of six tissues were used 
to construct the expression 
patterns of MsNAC genes. The 
bar at the right of the heat map 
represents the relative expres-
sion values
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under drought and salt conditions. Some MsNAC genes 
may utilize opposing regulatory mechanisms under abiotic 
stresses, such as MsNAC029, -058, and -068 that were down-
regulated under drought conditions, whereas these genes 
were up-regulated significantly under salt stress.

The expression patterns of candidate stress-response 
MsNACs were further measured by qRT-PCR under drought 
and salt treatments (Figs. 6 and 7). Among the fourteen abi-
otic stress response related MsNAC genes, some showed 
similarly expression patterns between drought and salt 

treatments, such as MsNAC001, -004, -005, -058, -068, 
and -090, were continuously up-regulated under both of 
two stresses. Wang et al. (2013) cloned a new NAC TF 
from alfalfa, named Medicago sativaNAC, which could be 
induced by high salinity, drought and ABA, and transgenic 
Arabidopsis possessed a better drought tolerance than the 
wild-type, which shared a highly similarity with MsNAC046 
(Wang 2013). While MsNAC046 was significantly down-
regulated at all treated time points under drought and salt 
stresses. These differences might be due to differences of 

Fig. 5   Heatmap representation and hierarchical clustering of the 
MsNAC homologous genes in M. truncatula during a drought and b 
salinity stress treatments. The microarray data were reanalyzed and 

the relative expression values were log2 transformed. The bar at the 
right of the heat map represents the relative expression values

Fig. 6   The relative expression ratios of fourteen representative 
MsNAC genes under drought conditions (under drought treatments 
for 0, 4, 8, and 24 h) have been calculated with respect to reference 
(Actin gene). Different letters indicate significant differences between 

different treatment time (P < 0.05). The name of the gene is written 
on the top of each bar diagram (error bars indicate the standard devia-
tion from three replicates)
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testing sample (Medicago sativaNAC gene was validated 
using leaf). The MsNAC029, -033, -036, and -038 possessed 
opposite expression profiles in salt conditions compared to 
drought, suggesting that these genes may have different 
response mechanisms between these two stresses. Previ-
ous study performed a functional analysis of ONAC095 in 
drought and cold stress, and the result showed that it is a pos-
itive regulator of cold response but a negative regulator of 
drought response in rice (Huang et al. 2016). Expression of 
MsNAC051 under salt stress, and MsNAC006 under drought 
increased initially, whereas MsNAC040 and -051 were firstly 
down-regulated and then up-regulated under drought condi-
tions (Figs. 6 and 7). These results also suggested that some 

genes in the NAC family may utilize opposing regulatory 
mechanisms in response to abiotic stresses.

Transgenic Yeast to Analysis Drought and Salt 
Stresses

To investigate the possible role of MsNAC genes in salt 
and drought stresses, we heterologously overexpressed two 
selected proteins (MsNAC001 and MsNAC058) in yeast 
strain INVSc1 using the pYES2 vector. We examined the 
effects of MsNAC001 and MsNAC058 on the survival of 
yeast cells exposed to 5 M NaCl and 30% PEG. As shown 
in Fig. 8, there is no difference in survival rates between 
the MsNACs transgenic and the control yeast under 

Fig. 7   The relative expression ratios of representative MsNAC genes 
under salinity conditions (under salinity treatments for 0, 4, 8, and 
24 h) have been calculated with reference (Actin gene). Different cap-

ital letters indicate significant differences between different treatment 
time (P < 0.05). The name of the gene is written on the top of each 
bar diagram (error bars indicate standard deviation)

Fig. 8   Stress tolerance test of MsNAC001 and MsNAC058 genes in 
yeast cells. The transformed yeast INVSc1 harboring MsNAC001, 
MsNAC058, and empty pYES2 were diluted into different ratio and 

grown on SC-Ura selective medium. a, Bb Non-stress, c, d 5 M NaCl 
for 36 h, e, f 30% PEG6000 for 36 h, respectively
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non-stress conditions. After cultured in 5 M NaCl for 36 h, 
MsNAC001-transformed line survived well, but the control 
line was intensely inhibited, while the yeast cells viability 
was reduced in MsNAC001-transformed cells grown on 30% 
PEG for 36 h compared with control. The result agrees with 
the expression patterns of homologous gene in M. trunca-
tula, which utilize opposing regulatory under both stresses 
(Fig. 5). Therefore, MsNAC001 may decrease drought resist-
ance in yeast cells, and indicated that MsNAC001 proteins 
conferred salt tolerance to yeast cells, but not tolerant to 
drought tolerance. MsNAC058 transformed survived better 
than the control under salt and drought stresses, especially 
under salt stress, which shared 83% identity with ATAF1. 
Previous study has showed that the overexpression of 
ATAF1 in Arabidopsis increased plant sensitivity salt, and 
exhibited significantly improved salt tolerance in transgenic 
rice (Liu et al. 2016).

Conclusion

Overall, 113 putative MsNAC TFs were identified in alfalfa. 
The phylogenetic relationships, conserved motifs, and mem-
brane-bound of MsNAC genes were evaluated. To mine the 
abiotic responsive NAC genes in alfalfa, a phylogenetic anal-
ysis was performed along with 34 well-investigated stress-
responsive NAC TFs. A comprehensive analysis of the 113 
MsNAC was presented and 14 abiotic stress response-related 
candidates were isolated. The functional annotation, regula-
tory network, and expression profiles of these 14 MsNACs 
strongly implied diversification and important roles under 
conditions of abiotic stress. Furthermore, overexpression of 
MsNAC001 and MsNAC058 in yeast cells increased toler-
ance to salt (both) and drought (MsNAC058) stresses. Con-
sidering the limited functional understanding of MsNAC in 
alfalfa, our findings will provide theoretical basis and can-
didate gene resources for subsequent studies of gene clon-
ing and functional characterization of MsNAC members in 
alfalfa.
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