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A B S T R A C T

Monitoring seasonal and interannual variability in gross primary production (GPP) and attributing these changes
to climate change across various ecosystems helps to predict the future climate-carbon cycle feedback. However,
such studies are scarce in dryland mountain ecosystems, possibly because of high spatial heterogeneity in
landscapes and terrain. To better understand how carbon fluxes of the dryland mountain ecosystem respond to
meteorology, we identified the trend and driving mechanism related to GPP in the Qilian Mountains (QLMs) of
northwestern China from 2000 to 2016 by adopting the vegetation photosynthesis model that incorporates
satellite and meteorological data. Our results revealed contrasting GPP trends in the growing season
(May–September) between 2000–2010 and 2010–2016. In the later period, widespread GPP reductions were
found across almost the whole area, especially at the middle and end of the growing season. In the central part of
the QLMs, GPP reductions were induced by warming hiatus in contrast to drought in the western and eastern
parts. Responses of GPP to temperature, precipitation and solar radiation differed in seasons and biomes. The
positive effect of rising temperature that increased GPP was dominant during the growing season. The inter-
annual variability in GPP was positively related to precipitation in June and July, but was negatively related to
precipitation in other months. A positive correlation between forest GPP and solar radiation occurred in all
months but July. Desert GPP responded negatively to solar radiation in all months but September. Temperature
and solar radiation accounted for most of the interannual variability in forest GPP. Temperature was the major
climate constraints on the interannual variability in grassland GPP. Precipitation and solar radiation primarily
controlled the interannual variability in desert GPP from July to September, while temperature became more
limited than precipitation and solar radiation for desert GPP in May and June.

1. Introduction

Terrestrial gross primary productivity (GPP) is the photosynthetic
carbon fixation by land plants per unit of time and surface area. GPP
describes the initial inputs of carbon from the atmosphere to terrestrial
ecosystems (Williams et al., 1997), and it serves as an indicator for
ecosystem functions, especially production and regulation, which is
essential for ensuring the well-being of people (de Groot et al., 2002).
Quantifying the spatiotemporal variations of GPP and attributing these
GPP changes to climate change at regional scales will be beneficial for
ecosystem service assessment and deepen our understanding of the
terrestrial carbon cycling (Heimann and Reichstein, 2008).

It remains a main challenge to simulate GPP at various scales but is

of priorities in carbon cycle studies. During the past decade, the eddy
covariance (EC) technique has emerged as an important tool for cal-
culating GPP from direct observations of carbon dioxide exchange at
the canopy-atmosphere interface (Baldocchi, 2003). Nevertheless, such
measurement is spatially limited due to the representativeness of flux
sites in complex landscapes (Jung et al., 2009). Remote sensing tech-
niques provide an alternative to evaluate the spatial-temporal patterns
of GPP across multiple biomes at high spatial and temporal resolutions
(Turner et al., 2006). The light use efficiency (LUE) model has been
widely used to quantify GPP globally (Beer et al., 2010). It follows an
algorithm of the photosynthetically active radiation (PAR), the fraction
of absorbed PAR by the vegetation canopy (fAPAR), and the maximum
LUE, down-regulated by environmental scalars, including air
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temperature, soil water content and vapor pressure deficit (Monteith,
1972). The uncertainty of LUE estimation among ecosystem types,
meteorological forcings, along with confusing signals of fAPAR caused
by atmospheric interference, have a significant impact on the model
accuracy (Jung et al., 2007).

Mountains are unique ecosystems that cover all latitudinally-con-
trolled climate zones, and the vegetation in mountains is extremely
vulnerable to climate mean and extremes (Diaz et al., 2003). The ex-
pected rate of climate warming in mountain areas during the 21 st
century might be two to three times greater than that in the 20th
century (Nogués-Bravo et al., 2007). As a result, mountain systems are
possibly the region most affected by future climate change. The main
climate control on GPP is solar radiation, followed by temperature and
precipitation, in tropical forests (Ichii et al., 2005). The GPP variability
in temperate humid zones is primarily affected by temperature (Davi
et al., 2006). In arid and semi-arid areas the relative importance of
temperature on GPP variation decreases as water availability tightens
the coupling between the meteorology and GPP variability (Nakano
et al., 2008). It remains uncertain, however, to what extent temperature
dominates GPP variability in dryland mountains, for the relationship
between temperature and GPP varies in time and space, considering
other climate constraints, such as precipitation and solar radiation
(Saigusa et al., 2008).

The Qilian Mountains (QLMs) in northwestern China are the cli-
matic divide between the East Asian monsoon and the westerlies. With
the aid of mountain glaciers and precipitation, it functions as the water
source to support irrigation agriculture in the Hexi Corridor–the famous
Silk Road, and also as the ecological shelter to safeguard ecological
viability in the northern Alxa Highland (Zhao et al., 2005). Since the
1960s, climate warming has led to an accelerated glacier retreat, alpine
grassland degradation and biodiversity decline (Yao et al., 2016; Sun
et al., 2018). Though the vegetation in the QLMs plays an important
role in carbon sequestration, soil and water conservation (Sun et al.,
2015; Wagner et al., 2015), few studies to date have examined the

magnitude and direction of GPP responses to climate change over large
spatial scales (Fang et al., 2018). Applications of remote sensing to GPP
modeling in the QLMs are precluded by limited meteorological data at
high spatial resolutions, along with topographic and atmospheric ef-
fects on the quality of satellite images.

Previous studies show that the crucial climatic factors driving the
interannual variation of GPP include temperature, precipitation and
solar radiation (Nemani et al., 2003). It is not clear, however, their
relative importance on the temporal variability of GPP and the climate-
growth relationships across climates and ecosystems over the QLMs. For
example, forest net primary production was positively correlated with
downward shortwave radiation, but was negatively correlated with
temperature and precipitation in the central QLMs from 2000 to 2012
(Yan et al., 2016). Over the past decade, increased precipitation and
warming hiatus have promoted the growth of Qinghai spruce in the
QLMs (Gao et al., 2018). Regarding an alpine meadow ecosystem in the
QLMs, a positive correlation between GPP and temperature was ob-
served, whereas there was a negative correlation between GPP and
precipitation (Zhang et al., 2008). Conversely, soil moisture was a
prime determinant of vegetation growth in an alpine steppe in the
QLMs (Yao et al., 2016). Meanwhile, the natural vegetation shows
seasonal variations of heat and water demand (Jia et al., 2016). Most
previous studies are restricted to annual scale analyses of the GPP
changes and their climate controls. However, little information is
known about the difference in GPP variability at monthly and seasonal
time scales (Wohlfahrt et al., 2008). These knowledge gaps highlight
the imperative need for regional studies on the spatial variability and
seasonal dynamics of GPP in the QLMs under global warming.

We hypothesize that the dependence of GPP on temperature may be
changed at different growth stages of various vegetation types in the
QLMs. Thus, we developed GPP products of the QLMs with a spatial and
temporal resolution of 500m and 8-day based on the Moderate
Resolution Imaging Spectroradiometer (MODIS) satellite data and
downscaled climatic data from the Climatic Research Unit (CRU) at the

Fig. 1. The spatial distribution of meteorological stations, EC flux sites and land cover types in the QLMs. The base map is drawn, using the MODIS land cover type
product (MCD12Q1) in 2016.
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University of East Anglia. The monthly GPP interannual variability and
its relationships with temperature, precipitation and solar radiation
were analyzed in each pixel over the period of 2000–2016. Our ob-
jectives were to investigate the trend and interannual variability in GPP
in the QLMs, and determine the climate drivers of GPP dynamics
varying in different seasons and biomes.

2. Materials and methods

2.1. Study area

This study focused on the Qilian Mountains (QLMs) located in the
northeastern margin of the Tibetan Plateau. The QLMs span
35°50′–39°59′N in latitude and 93°31′–103°54′E in longitude, with a
total area of approximately 2.0× 105 km2 (Fig. 1). It is bordered by the
Hexi Corridor to the north, the Qaidam Basin to the south, the Altun
Mountains to the west, and the Loess Plateau to the east. The elevation
increases gradually from southeast to northwest, with the highest alti-
tude reaching 5808m. The QLMs are characterized by a plateau con-
tinental climate. The mean annual temperature for the period of
1981–2010 is -2.1℃, with the highest value of 10.2℃ in July and the
lowest of -15.5℃ in January. The mean annual precipitation is 366mm,
87.7% of which falls as rain between May and September. The mean
annual solar radiation exceeds 7300MJm−2. Major biome types in the
QLMs involve grasslands, deserts, and forests, which account for 68.9%,
22.5% and 3.1% of the study area, respectively (Fig. 1). Temperature
and precipitation change with elevation, leading to vertical vegetation
zonality. It comprises warm deserts, desert steppes, alpine steppes,
forests, alpine meadows, and alpine deserts as elevation rises. Forests
are predominantly evergreen coniferous trees, dominated by Picea
crassifolia and Juniperus przewalskii. Alpine grasslands are mainly
composed of Stipa spp., Kobresia myosuroides, Potentilla fruticosa and
Caragana jubata. Warm deserts include primarily Salsola passerine,
Slenderbranch Kalidium, and Ceratoides latens. Alpine deserts consist
mainly of high-altitude cushion-like and periglacial vegetation.

2.2. Data sources and preprocessing

2.2.1. Remote sensing products
The MODIS Terra MOD09A1 Version 6 land surface reflectance

product with a spatial and temporal resolution of 500m and 8-day from
2000 to 2016 was provided by the Land Processes Distributed Active
Archive Center (LP DAAC, https://lpdaac.usgs.gov/). It has been cor-
rected for atmospheric interference, such as gasses, aerosols, and
Rayleigh scattering. The MODIS GPP product (MOD17A2H) at a spatial
and temporal resolution of 500m and 8-day, 2000–2016, was obtained
from the Numerical Terradynamic Simulation Group (NTSG) at the
University of Montana (http://www.ntsg.umt.edu/). Also, the MODIS
land cover type product (MCD12Q1) at a 500m resolution was ob-
tained from the LP DAAC, 2001–2016. The plant functional types (PFT)
classification scheme was employed. In the QLMs, forests comprise
trees and shrubs. Grasslands are grasses. Croplands are cereal and
broadleaf crops. Deserts are barren or sparsely vegetated lands, and are
divided by elevation into two groups including warm deserts
(2100–2500m) and alpine deserts (> 3900m). The digital elevation
model (DEM) data with a spatial resolution of 500m were derived from
the NASA Shuttle Rader Topographic Mission (SRTM) website (http://
www.glcf.umd.edu/).

2.2.2. Meteorological datasets
The CRU-NCEP Version 8 meteorological data over the period of

1961–2016, including daily maximum and mean air temperatures,
daily precipitation and daily downward shortwave radiation, had a
spatial resolution of 0.5° × 0.5° and were downloaded from the below
website: https://vesg.ipsl.upmc.fr/thredds/catalog/work/p529viov/
cruncep/V8_1901_2016/catalog.htm. Daytime temperature was

defined as the average of daily maximum and mean temperatures.
Temperature, precipitation and solar radiation data were averaged over
an 8 day. The ground observation of monthly mean temperature and
precipitation from 2000 to 2014 was collected from 8 meteorological
stations over the QLMs (Fig.1), provided by the China Meteorological
Data Service Center (http://data.cma.cn/). The station characteristics
can be found in Table S1. The monthly climate layer of China for the
period 1961–2000 was derived from the Chinese Ecosystem Research
Network (CERN, http://www.cnern.org.cn/). Such dataset include
spatial interpolations of maximum and mean air temperatures, pre-
cipitation and solar radiation with a spatial resolution of 1 km. Based on
740 meteorological stations and a 1 km SRTM DEM, the monthly cli-
mate maps of China were drawn, by using a spatial interpolation tool
implemented in geographic information systems. The raw CERN data
were resampled at a 500m resolution following a bilinear interpolation
method implemented in the ArcMap Version 10.0 software. Observed
monthly solar radiation was collected from the Gangcha (2000–2013)
and Haibei (2000–2014) stations, available from the China Meteor-
ological Data Service Center and the CERN, respectively (see Table S1
and Table S2 for more details).

2.2.3. EC-derived GPP data
Observed GPP at an 8-day interval was collected from 3 EC flux

tower sites (Fig.1) and was acquired from previous researches (Zhang
et al., 2008; Li et al., 2012; Wang et al., 2012). Details on the EC flux
tower descriptions can be found in Table S2. CO2 concentrations were
measured using an open-path infrared gas analyzer (Li-7500, LiCor Inc.,
USA). The sampling frequency was 10 Hz. The CO2 flux was calculated
at 30min interval and was processed with the despiking, coordinate
rotation, angle of attack correction and WPL correction for all flux
towers, of which the energy balance closure was> 80%, indicating the
reliability of CO2 flux measurements. GPP was calculated from the
measured daytime net ecosystem exchange using EC and daytime eco-
system respiration. Nighttime net ecosystem exchange was hypothe-
sized to be equal to ecosystem respiration. Daytime net ecosystem ex-
change was calculated based on the relationship established for
nighttime net ecosystem exchange and meteorology.

2.3. Methods

2.3.1. Delta downscaling method
Meteorological stations are limited in number and show sparse

spatial distribution in the QLMs, resulting in biased interpolations of
climate variables and thus insufficient accuracy of simulated GPP. In
this study, spatial patterns of the above-mentioned 8-day averaged
climatic variables were obtained from 2000 to 2016 by employing the
Delta downscaling process that incorporated terrain information and a
bilinear interpolation technique (Mosier et al., 2014). It used the 500m
resolution CERN data as inputs to scale anomaly grids of the 0.5° re-
solution CRU-NCEP data.

For temperature downscaling, the process is as follows.

− = → + =x x e e h h X y; ;i j a j i j i j i j i j a j i j, , , , , , , , (1)

where i and j are the annual and 8-day time-scales, respectively. a is the
reference period. xi,j is the low resolution dataset. Xa,j is the high re-
solution climatology. ei,j and hi,j are the anomaly at low and high spatial
resolutions, respectively. yi,j is the downscaled data.

For precipitation and solar radiation downscaling, the anomaly is
calculated as the ratio of the time series element and climatology.

= → × =

x
x

e e h h X y; ;i j

a j
i j i j i j i j a j i j

,

,
, , , , , ,

(2)

In this study, i ranges from 2000 to 2016. j varies from 1, 9, 17,
…,361. a is 1961–2000. Xa,j has a fixed value every 8 day within a
month. The downscaled monthly mean temperature, precipitation and
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solar radiation data were validated against ground observations.

2.3.2. Vegetation photosynthesis model
The vegetation photosynthesis model (VPM) is designed on the basis

of the conceptual partitioning of chlorophyll and non-photo-
synthetically active vegetation within a canopy, and computes GPP
over the photosynthetically active period of vegetation (Xiao et al.,
2004). The VPM-GPP has been successfully validated against the EC-
GPP record across multiple biomes (Zhang et al., 2017). The VPM was
driven by downscaled climatic data and MODIS satellite products to
derive GPP at a 500m resolution and an 8-day interval. The function
used was:

= × ×GPP PAR fAPAR εchl g (3)

where PAR accounts for 45% of the downward shortwave radiation (MJ
m−2). fAPARchl is the fraction of absorbed PAR by leaf chlorophyll in
the canopy. εg is the LUE (g C MJ−1).

fAPARchl is linearly related to the enhanced vegetation index (EVI),
calculated by using red (620–670 nm) and near infrared (NIR,
841–876 nm) bands from the MOD09A1 product. The raw EVI data
were processed with quality check, gap-filling and Savitzky-Golay fil-
tering in the TIMESAT Version 3.0 software (Jönsson and Eklundh,
2004).

= − ×fAPAR EVI( 0.1) 1.25chl (4)

= ×
−
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εg is regulated by the environmental scalar for temperature (Tscalar)
and soil water content (Wscalar) from maximum LUE (ε*).
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where Tmax, Tmin, T and Topt indicate the daytime maximum,
minimum, mean and optimal air temperatures for vegetation pro-
ductivity, respectively. LSWI is the land surface water index, estimated
as the normalized difference between near infrared and shortwave in-
frared (SWIR, 1628–1652 nm) bands from the MOD09A1 product.
LSWImax is the maximum LSWI during the growing season for in-
dividual vegetation pixels each year. The growing season of most ve-
getation lasted from May to September according to the phenological
distribution, which was delineated from MODIS NDVI, using a
threshold-based method for different vegetation groups (Zhou et al.,
2016). Tmax, Tmin and Topt were constant values for different biomes
(Zhang et al., 2017). Based on multiple site level studies, ε* had a
constant value of 1.94, 1.72 and 1.24 g C MJ−1 for forests, grasslands
and deserts, respectively (Li et al., 2007, 2012; Wang et al., 2012).
Critical parameters of the VPM can be found in Table S3. In the VPM, T,
PAR, EVI and LSWI belong to the parameter varying across space and
time.

The MCD12Q1 product provided biome type information for the
VPM annually. The missing observation about the biome type in 2000
was derived from that in 2001. There were 46 raster layers of the VPM-
GPP within one year, each of which represented GPP for an 8-day
average. Monthly GPP was calculated as the sum of daily GPP (g C
m−2). The vegetated land was defined as mean annual GPP > 1.0 g C
m−2, and the barren land and cropland was excluded. The variability of
modeled GPP was validated against EC-GPP. VPM-GPP was also com-
pared with MODIS GPP data in terms of interannual variations, due to

limited time series of EC-GPP.

2.3.3. Time trend analysis
The Mann–Kendall test was used to analyze the monthly GPP trend

in each grid for the QLMs from 2000 to 2016. This method belongs to a
non-parametric significance test, which detects monotonic trends in a
time-varying variable and remains insensitive to abrupt changes (Mann,
1945). Positive values of the Mann–Kendall test (ZS) indicate an in-
creasing trend and vice versa. The values of± 1.28,± 1.64 and± 2.32
suggest 10%, 5% and 1% significant levels of the trend in the Man-
n–Kendall test. The magnitude of monthly GPP trends was calculated
with the Sen’s slope. It makes a reliable estimate of monotonic trends
and has low sensitivity to outliers (Sen, 1968). The GPP trend was
considered significant if the absolute value of ZS was>1.28. The
turning point of growing season GPP trend was determined by mini-
mizing the residuals of piecewise linear fits, with the significance of
turning point being tested by the t-test against the null hypothesis and
the Akaike Information Criterion (ΔAIC), which offers a means for the
selection between the simple linear regression and the two-part piece-
wise linear regression models (Xu et al., 2017).

2.3.4. Correlation analysis
The partial correlation coefficient of monthly GPP with tempera-

ture, precipitation and solar radiation was calculated in each grid. It
assesses the relationships between two variables after eliminating the
impact of other variables. t-tests were used to determine the sig-
nificance level for the partial correlation coefficient. The values of±
1.77,± 2.16 and±3.01 suggest 10%, 5% and 1% significant levels of
the correlations in the t-test (df= 13). The P-value<0.1 was con-
sidered significant.

2.3.5. Multivariable linear regression model
The multivariable linear regression model was adopted to simulate

the GPP interannual variability with temperature, precipitation and
solar radiation. Time series of the monthly GPP and the corresponding
climatic factors was detrended in each grid. We then used the standard
regression coefficient to determine the relative contribution of each
climatic factor to the GPP interannual variability (Yao et al., 2018).

= + × + …+ × +Y b b X b X μ0 1 i1 i (10)

= ×B b S X
S

eta td( )
td(Y)i

i

(11)

where b0 is the constant value. bi (i ≥ 1) is the partial regression
coefficient. μ is the random error. Beta is the standard regression
coefficient. Std(Xi) and Std(Y) are the standard deviation of in-
dependent and dependent variables, respectively. The Beta of three
climate variables was normalized to obtain RGB combination to de-
termine the climate drivers of GPP dynamics.

2.3.6. Statistical analysis
Using the MATLAB R2014b, the Kruskal-Wallis test was used to

assess for significance differences on continuous dependent variables by
categorical independent variables (α=0.05). This method is a non-
parametric version of classical one-way analysis of variance (ANOVA),
and an extension of the Wilcoxon rank sum test to more than two
groups (Kruskal and Wallis, 1952). The reason why the Kruskal-Wallis
test was used was that the compared data were not always normally
distributed and did not have variance homogeneity. Moreover, the root
mean squared errors (RMSE) were used to quantify the agreement be-
tween observed and simulated values.
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3. Results

3.1. Validation of simulated climate and GPP data

The regression analysis suggested that the Pearson correlation
coefficient of downscaled and observed temperature was highest (0.98)
in August but was lowest (0.89) in November (Fig.S1). The correlation
between downscaled and observed precipitation ranged from 0.55 in
December to 0.89 in September. The coefficient of determination
was>0.5 in all months but December (Fig.S2). The Pearson correlation
coefficient of the predicted and observed values of solar radiation
was>0.95 (Fig.S3). The RMSE of monthly mean temperature varied
from 0.6 to 1.8℃, with a mean of 1.1℃. The RMSE of monthly pre-
cipitation and solar radiation was 9.7 (1.3–23.7) mm and 43.3
(41.9–44.6) MJ m−2, respectively.

The Pearson correlation coefficient of VPM-GPP and EC-GPP was
0.98, 0.95 and 0.95 at the A’rou, Haibei and Dayekou sites, respectively
(Fig. 2). The corresponding RMSE of 8-day GPP reached 7.92 g C m−2,
5.58 g C m−2 and 8.44 g C m−2. The differences between annual VPM-
GPP and EC-GPP ranged from -19.3% to 13.8% in an alpine meadow
and from 0.6% to 17.8% in an evergreen coniferous forest (Table 1).
Compared with MODIS-GPP, VPM-GPP showed higher estimation in
70.7% of the vegetated lands of the QLMs, dominated by forests and
grasslands (Fig.S4). For deserts, MODIS-GPP was higher than VPM-GPP

in most cases. Furthermore, MODIS-GPP underestimated EC-GPP by
16.1%–29.9% and 15.4%–35.3% in forests and grasslands, respectively.
Annual VPM-GPP was positively correlated with annual MODIS-GPP in
92.5% of vegetated lands, 60.3% of which the relationship was sig-
nificant (P < 0.1).

3.2. Changes in mean annual GPP across regions and biomes

The mean annual GPP for the period of 2000–2016 was 182.6 g C

Fig. 2. The comparison of 8-day EC-derived GPP and VPM-simulated GPP at A’rou (a), Haibei (b) and Dayekou flux sites (c).

Table 1
Summary of calculated GPP from EC measurements and simulated GPP derived
from the VPM at 3 flux sites (g C m−2).

Flux site Ecosystem type Year EC-derived data VPM-derived data

GPP(5–9) GPP(1–12) GPP(1–12) RE

A’rou Alpine meadow 2009 733.8 803.9 874.5 8.8%
Haibei Alpine meadow 2002 492.8 503.9 573.3 13.8%

2003 559.5 604.7 487.8 −19.3%
Dayekou Evergreen

coniferous forest
2006 621.7 750.0 754.2 0.6%
2007 648.6 735.2 839.3 14.2%
2008 572.0 678.5 799.0 17.8%

GPP(5–9) and GPP(1–12) show the growing season and annual GPP, respectively.
RE = [(GPPVPM - GPPEC) / GPPEC] × 100%.
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Fig. 3. The spatial distribution of mean annual GPP (a), temperature (b) and precipitation (c) over the period 2000–2016. Annual GPP varies with annual mean
temperature (d) and annual precipitation (e). Different letters show significant differences in the insert graph.
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m−2 in the QLMs, with the total GPP reaching 36.5 Tg C (1 Tg =
1012g). High values of annual GPP were found in the eastern and cen-
tral parts of the QLMs, which was in consistent with the spatial dis-
tribution of annual precipitation (Fig. 3a,c). In addition, annual GPP
followed a biphasic trend with annual mean temperature and pre-
cipitation (Fig. 3d,e). That is, GPP increased with temperature when its
value reached -0.3℃ but decreased with temperature rises. Similarly, a
two-stage pattern of GPP and precipitation was found when annual
precipitation was approximately 500mm. At the biome level, forests
represented the largest annual GPP (Median ± SD, 746 ± 295 g C
m−2), followed by grasslands (312 ± 201 g C m−2) and deserts
(32 ± 152 g C m−2) (Fig. 3a).

3.3. Interannual variations of monthly GPP

Only GPP dynamics and its relationships with climatic factors
during the growing season were analyzed as monthly GPP was low
during the non-growing season (Fig. 2). The two-part piecewise linear
regression model indicated a turning point of growing season GPP trend
in 2010 (ΔAIC = -2.46). The total growing season GPP in the QLMs
increased at a rate of 0.64 Tg C yr−1 (P < 0.1) from 2000 to 2010 but
then decreased at a rate of -1.96 Tg C yr−1 from 2010 to 2016
(P<0.05) (Fig. 4). Meanwhile, such opposite trends between
2000–2010 and 2010–2016 were also found in growing season tem-
perature, precipitation and solar radiation. Nevertheless, these trends
were not statistically significant, except for an increasing trend in
growing season precipitation for the period 2000–2010 (4.71mm yr−1,
P < 0.1). The partial correlation coefficient (r) of GPP and pre-
cipitation was 0.49 (P= 0.06). Low correlations were found between
GPP and temperature (r=0.30, P= 0.27), followed by solar radiation
(r = -0.11, P= 0.69). At monthly time scales, a significant increasing
trend in GPP from 2000 to 2010 was detected in May, June, August and
September (Table 2). The increasing rate was higher in June and August
(0.20 Tg C yr−1) than September (0.12 Tg C yr−1) and May (0.06 Tg C
yr−1). However, a significant decreasing trend in GPP from 2010 to
2016 was found in July, August and September. The decreasing rate
was highest in July (-0.90 Tg C yr−1), followed by August (-0.58 Tg C
yr−1) and September (-0.26 Tg C yr−1). Over the period of 2000–2016,
only a significant positive correlation between GPP and temperature
was observed in August (r=0.55) and September (r=0.45).

At the pixel scale, an increasing trend in monthly GPP was pre-
vailing in most vegetated lands from 2000 to 2010 (Fig. 5). For this time
period significant increases in GPP in June and July were found mainly

in the central and western parts of the QLMs (P < 0.1), dominated by
grasslands and deserts. The area percentage of increasing GPP in June
and July accounted for 40.1% and 26.9% of vegetated lands, respec-
tively. In May, August and September, significant GPP increases were
observed in the southern and eastern parts of the QLMs (P < 0.1),
where most forests occurred. Percentage of the areas with increased
GPP reached 22.2%, 32.6% and 35.5%, respectively. Most vegetated
areas were dominated by a significant decreasing trend in monthly GPP
from 2010 to 2016 (P < 0.1). Percentage of the areas with decreased
GPP was larger in July (66.4%), August (47.8%) and September
(40.2%) than in June (20.4%) and May (3.7%). In May and June, sig-
nificant GPP decreases appeared mainly in the northwestern part of the
Qinghai Lake (P < 0.1), including primarily alpine meadows. Wide-
spread decreases in GPP emerged in the QLMs from July to August. In
September, a decreasing trend in GPP was detected in the eastern and
central parts of the QLMs, dominated by forests and grasslands.

At the biome level, the increasing rate of growing season GPP from
2000 to 2010 was highest in forests (8.1 g C m−2 yr-1), followed by
grasslands (4.7 g C m−2 yr-1), but lowest in deserts (1.5 g C m−2 yr-1)
(Fig. 6). Similarly, the decreasing rate of growing season GPP during
the period of 2010–2016 was higher in forests (-19.1 g C m−2 yr-1) than
grasslands (-15.6 g C m−2 yr-1) and deserts (-4.7 g C m−2 yr-1). Re-
garding forests and grasslands, the increasing rate of GPP within the
growing season from 2000 to 2010 was higher in June and August. Such
increasing rates were highest in deserts in July, followed by August. It
was common that all biomes suffered larger GPP declines in July and
August from 2010 to 2016, with the highest decreasing rate of GPP
occurring in July.

3.4. Major climate drivers of monthly GPP interannual variability

During the growing season, 21.1% of vegetated regions presented a
positive correlation between GPP and temperature (P < 0.1), parti-
cularly in the south of the Qinghai Lake and the central part of the
QLMs (Fig. 7). Percentage of the areas with a negative correlation be-
tween GPP and temperature was low (2.4%), mostly in warm deserts
(Table S4). Meanwhile, 20.6% of vegetated areas (20.6%) had a posi-
tive correlation between GPP and precipitation (P < 0.1) at low ele-
vations of the QLMs, dominated by desert steppes and alpine steppes. A
negative correlation between GPP and solar radiation emerged mainly
at high altitudes (7.4%, P < 0.1). GPP was significantly correlated
with climate variables in 44.5% of vegetated lands (P < 0.1).

From May to September, a significant positive correlation between

Fig. 4. The interannual variation of growing season GPP (a), growing season temperature (b), growing season precipitation (c) and growing season solar radiation
(d), 2000–2016. ZS shows values of the Mann–Kendall test.
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GPP and temperature was found in most vegetated lands (P < 0.1),
while a significant negative correlation between GPP and temperature
was found just in 2.9% of vegetated lands in September, mostly in some
local regions of the western and central QLMs (Fig. 7). In May and June,
8.4% and 15.6% of vegetated lands showing a positive correlation be-
tween GPP and temperature emerged in the western part of the QLMs
(Table S4). From July to September, such a positive correlation was
observed mainly in the eastern and central portions. Percentage of the
areas having a positive correlation between GPP and temperature
reached highest in September (26.4%), followed by August (17.3%) and
July (13.0%). Meanwhile, a significant positive correlation between
GPP and precipitation (P < 0.1) in June was most obvious during the
growing season, especially on the foot of the QLMs (12.9%). On the
contrary, 6.3% and 7.7% of vegetated regions showed a negative cor-
relation between GPP and precipitation in August and September, re-
spectively, in the central QLMs. A significant positive correlation be-
tween GPP and solar radiation (P < 0.1) was detected in May, June
and September, particularly in the eastern and central portions. The
corresponding area reflecting positive GPP-solar radiation correlations
occupied 10.5%, 7.0% and 9.3% of vegetated lands, respectively. Per-
centage of the vegetated lands with a significant correlation between
GPP and climatic factors was highest in September (39.8%), followed
by June (31%) and August (26.7%), but was lowest in July (23.1%) and
May (22.9%).

Regarding all biome types, GPP was positively correlated with
temperature from May to September (Fig. 8). Furthermore, GPP was
positively related to precipitation in June and July but negatively
correlated with precipitation in May, August and September. For most
forests, a positive correlation between GPP and solar radiation was
detected in all months but July. By contrast, GPP was negatively related
to solar radiation in all months but September for most deserts.
Grassland GPP was negatively correlated with solar radiation in July
and August but positively correlated with solar radiation in other
months. Generally, GPP was more positively correlated with tempera-
ture than precipitation and solar radiation in all biome types during the
growing season (Fig. 8). An exception to this was that forest GPP was
more positively related to precipitation than solar radiation and tem-
perature in June. Such phenomenon also emerged in deserts, with a
higher correlation between GPP and precipitation in July, and between
GPP and solar radiation in September. With the same biome type, the
partial correlation coefficient of GPP with climatic factors varied for
different months (Fig. 8). For forests and grasslands, a positive corre-
lation between GPP and temperature was highest in September. For
deserts, the highest positive correlation between GPP and temperature
appeared in June and August. GPP was more responsive to precipitation
in June and July. As for the positive correlation between GPP and solar
radiation, it was higher for forests in June and September. For grass-
lands such a higher correlation was found in May and September.

The major climate drivers of the interannual variability in GPP
differed across time and space (Fig. 9). In the eastern part of the QLMs,
temperature and solar radiation dominated the GPP interannual
variability in most months during the growing season except for June,

when precipitation was a major climate driver. In comparison, the
central portion of the QLMs was primarily affected by temperature from
June to September but was affected by solar radiation in May. For the
western part of QLMs, precipitation and solar radiation affected pri-
marily the interannual variability in GPP from July to September. In
May and June, temperature was the dominant climatic factor for GPP
dynamics. Overall, during the growing season the responses of monthly
GPP to climate variables in the QLMs were influenced primarily by
temperature. Percentage of the temperature-dominated region ranged
between 41% and 47.8%. In addition, percentage of the precipitation-
and solar radiation-dominated area was largest in July (34.8%) and
May (40.9%), respectively. Compared with May and June, precipitation
outweighed solar radiation in driving the interannual variability in GPP
from July to September.

4. Discussion

4.1. Evaluation of Delta downscaling method

Meteorological forcings are one of the important inputs for satellite-
based simulation of GPP (Jung et al., 2007). Simplification of landscape
complexity could cause GPP modeling to be considerably biased, par-
ticularly in mountainous regions (Sabetraftar et al., 2011), for the to-
pography, such as elevation, slope and aspect, influences the distribu-
tion patterns of climate variables, including temperature, precipitation
and solar radiation. Insufficient meteorological stations are distributed
over the QLMs (Fig. 1), resulting in great uncertainty about the spatial
interpolation result. To capture reliable meteorological data at fine
spatial resolutions, we used a statistical downscaling technique. Al-
though the simulated climatic data were slightly lower than the ob-
servation value, performance of the Delta downscaling method was
satisfactory in predicting the distribution pattern of climatic factors
over complex terrain (Fig.S1-3), for this method incorporated the to-
pographical effect in the distribution of meteorology represented in
high resolution input grids (Mosier et al., 2014). This study shows that
the Delta downscaling method has a potential application for acquiring
meteorological data at relatively high spatial resolutions in hetero-
geneous regions, which requires less computation time and limited field
measurements. Nevertheless, the meteorological data currently con-
sidered are the results of a CRU-NCEP statistical downscaling, ne-
glecting regional hydro-meteorological processes as its spatial resolu-
tion is approximately 500 km. Moreover, the high resolution
climatology input (CERN data at a spatial resolution of 1 km) nested in
a CRU-NCEP may contain systematic errors in simulating the distribu-
tion of meteorological variables when the terrain condition is highly
heterogeneous (Wilby and Wigley, 1997).

4.2. Assessment of VPM-GPP

It is necessary to assess its performance when employing VPM-GPP
to study the spatial and temporal variations of carbon fluxes over the
QLMs. Our results indicated that VPM-GPP generally tended to

Table 2
The Sen’s slope of monthly GPP (Tg C yr−1) in two different time periods (2000–2010 versus 2010–2016), and the correlation of GPP with temperature (rT),
precipitation (rP), and solar radiation (rS) at monthly time scales from 2000 to 2016.

Month Between 2000 and 2010 Between 2010 and 2016 Partial correlation coefficient

Sen’s ZS Sen’s ZS rT rP rS

May 0.06** 1.87 −0.01 −0.30 0.33 −0.08 0.19
June 0.20** 1.71 −0.23 −1.20 0.30 0.26 0.12
July 0.07 0.62 −0.90*** −3.00 0.29 0.14 −0.18
August 0.20* 1.56 −0.58** −1.80 0.55** −0.24 −0.09
September 0.12** 2.18 −0.26** −1.80 0.45* 0.03 0.28

*, ** and *** denote 10%, 5% and 1% significant levels. ZS shows values of the Mann–Kendall test.

H.-j. Xu, et al. Agricultural and Forest Meteorology 276-277 (2019) 107628

8



overestimate 8 day and annual GPP when compared with calculated
GPP from EC measurements for forests and grasslands (Fig. 2 and
Table 1). When compared with MODIS-GPP, VPM-GPP showed higher

estimation in forests and grasslands but was lower in deserts (Fig.S4).
Nevertheless, the variability of VPM-GPP agreed well with EC-derived
GPP with an 8-day time interval and MODIS-GPP each year. Our

Fig. 5. The spatial distribution of monthly GPP trends for the period of 2000–2010 and 2010–2016, respectively.
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findings were in consistent with previous researches, showing that
MODIS overestimated GPP at low productivity sites due to artificially
high values of fAPAR but underestimated GPP in the high productivity
sites due to low values for LUE (Turner et al., 2006). Therefore, this
study demonstrates that VPM-based GPP estimation is capable of
tracking the seasonal variation of EC-GPP, and can be applied to
monitor the interannual variation of GPP among biome types. The VPM
is driven by the EVI, LSWI, PAR, temperature and maximum LUE. A few
flux towers and limited meteorological stations are available in the
QLMs. PAR is one of the primary sources of uncertainty in GPP

estimation (He et al., 2014). The noise due to cloud contamination in
the satellite data and the different seasonality of EVI, especially during
the leaf-expansion period, makes the EVI-GPP relationships complex
(Nagai et al., 2010). EVI is strongly affected by diurnal and seasonal
changes in solar elevation angle when vegetation is sparse (Sims et al.,
2008). The maximum LUE depends on land cover types and is con-
sidered as a constant for a certain vegetation type. Much attention
should be given to the variability of maximum LUE among vegetation
types across a heterogeneous landscape (Wang et al., 2010). Moreover,
the MODIS land cover type product at a 500m spatial resolution

Fig. 6. The Sen’s slope of GPP among biomes during the period of 2000–2010 and 2010–2016, respectively. Boxplot elements: box= values of 25th and 75th
percentiles; horizontal line=median; whisker =±1SD.
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contains a large number of mixed pixels, which reduces the accuracy of
land cover classifications over the QLMs, characterized by hetero-
geneous and fragmented landscapes (Li et al., 2012). It is possible that
the LSWI cannot fully characterize the impact of water availability on
vegetation productivity (Yuan et al., 2015). All these errors will pro-
pagate in the VPM, reducing the accuracy of GPP estimation.

It should be noted that the distribution patterns of annual GPP were
dependent on annual mean temperature and precipitation over the
QLMs (Fig. 3). The decrease of GPP with rising temperature was in-
duced by the decrease of precipitation with lowering elevation. Simi-
larly, the decrease of GPP with rising annual precipitation was caused
by lowering temperature with increasing elevation. Rising temperature

Fig. 7. The partial correlation coefficient of montly GPP with temperature, precipitation and solar radiation in each grid. The two arrows show the ranges that are
significant.
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leads to higher evaporative demand and reduced soil moisture (Cook
et al., 2014). However, annual GPP decreased with annual precipitation
when it was abundant but increased with rising temperature when it
was low. At high altitudes, heat could outweigh moisture in allowing
the establishment of vegetation community (Dawes et al., 2015). In this
study, we first present the temperature and precipitation thresholds
affecting the spatial distribution of annual GPP in the QLMs, having
implications for simulating the spatial variability in GPP under future
climate change.

4.3. Contrasting trends in GPP

We observed a significant increasing trend in growing season GPP in
the QLMs for the period 2000–2010 (Fig. 4), and June, August and
September contributed most to this trend in growing season GPP (Table
S4). Our results were in consistent with previous studies, showing that
the radial growth in trees and vegetation cover increased in the QLMs
from 2000 to 2010 (Deng et al., 2013; Gao et al., 2018). However, there
were clear decreases in growing season GPP in the QLMs for the period
2010–2016 (Fig. 4), and GPP reductions were dramatic across almost
the whole area (Fig. 5), a finding that has not been reported before. The
growing season mean NDVI and EVI decreased slightly (Fig. S5), sug-
gesting decreased vegetation growth for this time period. July, August
and September contributed most to this trend in growing season GPP
(Table S4). We also found that higher-productivity biomes experienced
higher changing rates in GPP than lower-productivity biomes (Fig. 6).
Our findings highlight widespread GPP reductions at the middle and
end of the growing season from 2010 to 2016. Special attention should
be given to GPP as a key variable determining useful products and
ecosystem services that may be at risk. Once multi-year calculated GPP
data from EC flux towers under different climate zones and ecosystem
types are available for the QLMs, analyses of EC-GPP will help reduce
the uncertainty of VPM-GPP trends, improving our understanding of the
carbon cycle of a dryland mountain ecosystem. Additionally, the length
of the dataset analyzed (17 years), which is imposed by the availability

of MODIS imagery, represents a major constraint for the current in-
vestigation on abrupt changes of the GPP trend in the QLMs.

Previous studies have suggested that China has experienced
warming hiatus since 1998, caused mainly by decreases in annual mean
maximum temperature (Li et al., 2015). Likewise, we found that
growing season mean temperature increased from 2000 to 2010 but
decreased since 2010 (Fig. 4). Such contrasting trends also appeared in
precipitation and solar radiation, coinciding with the trend in growing
season GPP. Temperature, moisture and light conditions are the pri-
mary environmental controls on the CO2 flux of Asian terrestrial eco-
systems (Kato and Tang, 2008). In the central and southern parts,
growing season GPP increased from 2000 to 2010 in response to rising
temperature (Fig. 7), while a contrasting trend in growing season GPP
from 2010 to 2016 was caused by decreased temperature (Fig.S6). The
positive effect of rising temperature causing increased GPP was
achieved by increasing photosynthetic capacity and prolonged growing
season length (Nemani et al., 2003). In the western and eastern parts,
precipitation primarily determined the trend in GPP (Fig. 7). The un-
ique finding of this study was that variations in precipitation in June
played a dominant role in the growing season GPP trend in the eastern
portion of the QLMs, where most forests occurred. It highlights that the
growth of evergreen coniferous forests is susceptible to drought, par-
ticularly at the beginning of the growing season, when the canopy leaf
area is more responsive to water deficit (Croft et al., 2015). At the
middle and end of the growing season, the seasonal GPP variation is
more correlated with the canopy chlorophyll content, influenced pri-
marily by the variability in leaf nitrogen contents and pigments
(Dechant et al., 2017). The positive correlation between forest pro-
duction and drought stress has been reported in our previous publica-
tions (Xu et al., 2016, 2018). We conclude that warming hiatus leads to
declines in growing season GPP in the central and southern parts of the
QLMs in 2010–2016. Drought results in GPP reductions in the western
and eastern portions of the QLMs.

Fig. 8. The partial correlation coefficient of GPP with tem-
perature (TEM), precipitation (PRE) and solar radiation (SOL)
for different biomes at the monthly time scale. Different
lower-case letters suggest significant differences among cli-
mate variables of the same month. Different capital letters
show significant differences for different months of the same
climatic factors.
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4.4. The relationship between GPP and climate variables

The relationship between GPP and climate variables changed across
seasons and biomes (Fig. 8). The positive effect of increased tempera-
ture was dominant in most vegetated regions in the growing season,
mainly composed of evergreen coniferous forests, alpine meadows and
alpine deserts. Rising temperature extends the range of growing season
and promotes summer photosynthesis when moisture is nonlimiting
(Jeong et al., 2011). The negative effect of rising temperature appeared
in warm deserts and desert steppes (Fig. 7), where vegetation dynamics
are controlled by moisture, and warming exacerbates plant water stress
(Yao et al., 2016). The interannual variability in GPP was positively
correlated with precipitation in June and July, when temperature and
solar radiation were abundant. It was negatively related to precipitation
in May, August and September, reflecting decreasing demand for soil
moisture but increasing demand for temperature and light conditions,
in line with previous studies (Zhang et al., 2008; Yan et al., 2016).
Interestingly, our results identified a negative correlation between GPP
and solar radiation in alpine deserts at the beginning and middle of the
growing season (Fig. 8). A recent study suggests that enhanced UV
radiation may slow photosynthesis and decrease plant biomass, but its
effect is species-specific (Barnes et al., 2017). Overall, temperature and
solar radiation accounted for most interannual variability in GPP for
forests (Fig. 9). The reason is that Qinghai spruce is the dominant tree
species, distributed mainly in the shady slope of the mountain. Tem-
perature played a dominant role in the interannual variability in GPP

for most grasslands, mainly composed of alpine meadows, confirming
earlier studies (Xu et al., 2017). In the western part, alpine deserts are
the dominant ecosystem types, including primarily high elevation
cushion-like and periglacial vegetation. Temperature became a stronger
determinant of the variability in GPP at the beginning of the growing
season, possibly because of its effect on germination and leaf green-up
(He et al., 2018). On the other hand, precipitation followed by solar
radiation primarily determined the GPP variability during the middle
and end of the growing season, showing that even in high-altitude re-
gions vegetation productivity responded to precipitation changes in a
relatively arid environment. Understanding the seasonal variation of
GPP to climatic factors among biomes is important for determining the
climate controls of carbon fluxes in mountain ecosystems.

4.5. Research limitations

In the QLMs, the human-induced land cover changes are small.
From 2000 to 2010, the forest area only increased 7 km2. Croplands
accounted for 0.7% of the total study area and are not included in the
current research. The land cover transition between deserts and grass-
lands are significant but it is caused mainly by climate change, con-
sidering that alpine deserts are the major component of deserts and are
distributed at high altitudes, where human activity is weak. In this
study, the spatial resolution of GPP data is 500m, and the effects from
human activities on GPP variations may be reduced at landscape scales,
since human activities play an important role in local regions, such as

Fig. 9. The climate drivers for monthly GPP interannual variability.
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mining and tourism. Results of the alpine desert are reported but the
VPM is not validated. Considering that alpine deserts are mainly com-
posed of C3 species, the VPM sets a constant maximum LUE (1.24 g C
MJ−1) for it. Future research needs to assess the performance of VPM in
alpine deserts based on the field-based estimation of GPP derived from
the EC method. Additionally, the downscaling of 0.5 °CRU-NCEP aims
to match the temporal and spatial resolution of the MODIS record. The
major challenge is to obtain raster layers of the VPM-GPP confined to
the temporal record that matches with the EC-GPP dynamics rather
than spatial resolutions. The accuracy of CRU-NCEP data and high
frequency weather patterns that are not present in the downscaled data
cause the uncertainty of simulated GPP with a temporal resolution of an
8-day.

5. Conclusions

The VPM has the potential to be used to examine the seasonal and
interannual dynamics of GPP in mountainous regions, characterized by
diverse ecosystems and complex terrain. To obtain meteorological data
at high spatial resolutions under the circumstances of limited field
observation, the Delta downscaling method performs well. Abrupt
changes of the GPP trend in the QLMs were observed, due to variations
in temperature and precipitation across regions. Widespread GPP re-
ductions in recent years highlight special attention should be given to
GPP as a key variable determining useful products and ecosystem ser-
vices that may be at risk. We verified the hypothesis that the depen-
dence of GPP on temperature was changed at different growth stages of
various vegetation types over the QLMs. The effects of solar radiation
were significant, at least in certain months in the QLMs. Temperature
and solar radiation were the major drivers of forest GPP variability.
Temperature was a critical determinant for grassland GPP variability.
Moisture was more limiting than temperature and light for alpine desert
GPP during the middle and end of the growing season. Long-term cal-
culated GPP from the EC flux measurement is needed to reduce the
uncertainty of VPM-GPP trends and its covariation with climate for
future research.

Acknowledgements

This work was supported by the Fundamental Research Funds for
the Central Universities (grant numbers lzujbky-2018-4) and the
National Key Research and Development Program of China (grant
numbers 2016YFE0203400). We thank anonymous referees for their
comments that significantly improved this paper.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.agrformet.2019.
107628.

References

Baldocchi, D.D., 2003. Assessing the eddy covariance technique for evaluating carbon
dioxide exchange rates of ecosystems: past, present and future. Glob. Change Biol. 9,
479–492.

Barnes, P.W., Ryel, R.J., Flint, S.D., 2017. UV screening in native and non-native plant
species in the tropical alpine: implications for climate change-driven migration of
species to higher elevations. Front. Plant Sci. 8, 1451.

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Roedenbeck, C.,
Arain, M.A., Baldocchi, D., Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop, G.,
Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K.W., Roupsard, O.,
Veenendaal, E., Viovy, N., Williams, C., Woodward, F.I., Papale, D., 2010. Terrestrial
gross carbon dioxide uptake: global distribution and covariation with climate.
Science 329, 834–838.

Cook, B.I., Smerdon, J.E., Seager, R., Coats, S., 2014. Global warming and 21st century
drying. Clim. Dyn. 43, 2607–2627.

Croft, H., Chen, J.M., Froelich, N.J., Chen, B., Staebler, R.M., 2015. Seasonal controls of
canopy chlorophyll content on forest carbon uptake: implications for GPP modeling.

J. Geophys. Res.-Biogeosci. 120, 1576–1586.
Dawes, M.A., Philipson, C.D., Fonti, P., Bebi, P., Haettenschwiler, S., Hagedorn, F., Rixen,

C., 2015. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line
vegetation. Glob. Change Biol. 21, 2005–2021.

Davi, H., Dufrene, E., Francois, C., Le Maire, G., Loustau, D., Bosc, A., Rambal, S., Granier,
A., Moors, E., 2006. Sensitivity of water and carbon fluxes to climate changes from
1960 to 2100 in European forest ecosystems. Agric. For. Meteorol. 141, 35–56.

de Groot, R.S., Wilson, M.A., Boumans, R.M.J., 2002. A typology for the classification,
description and valuation of ecosystem functions, goods and services. Ecol. Econ. 41,
393–408.

Dechant, B., Cuntz, M., Vohland, M., Schulz, E., Doktor, D., 2017. Estimation of photo-
synthesis traits from leaf reflectance spectra: correlation to nitrogen content as the
dominant mechanism. Remote Sens. Environ. 196, 279–292.

Deng, S., Yang, T., Zeng, B., Zhu, X., Xu, H., 2013. Vegetation cover variation in the Qilian
Mountains and its response to climate change in 2000-2011. J. Mt. Sci. 10,
1050–1062.

Diaz, H.F., Grosjean, M., Graumlich, L., 2003. Climate variability and change in high
elevation regions: past, present and future. Clim. Change 59, 1–4.

Fang, S., He, Z., Du, J., Chen, L., Lin, P., Zhao, M., 2018. Carbon mass change and its
drivers in a boreal coniferous forest in the Qilian Mountains, China from 1964 to
2013. Forests 9, 57.

Gao, L., Gou, X., Deng, Y., Wang, Z., Gu, F., Wang, F., 2018. Increased growth of Qinghai
spruce in northwestern China during the recent warming hiatus. Agric. For. Meteorol.
260–261, 9–16.

He, Z., Du, J., Chen, L., Zhu, X., Lin, P., Zhao, M., Fang, S., 2018. Impacts of recent climate
extremes on spring phenology in arid-mountain ecosystems in China. Agric. For.
Meteorol. 260–261, 31–40.

He, H., Liu, M., Xiao, X., Ren, X., Zhang, L., Sun, X., Yang, Y., Li, Y., Zhao, L., Shi, P., Du,
M., Ma, Y., Ma, M., Zhang, Y., Yu, G., 2014. Large-scale estimation and uncertainty
analysis of gross primary production in Tibetan alpine grasslands. J. Geophys. Res.-
Biogeosci. 119, 466–486.

Heimann, M., Reichstein, M., 2008. Terrestrial ecosystem carbon dynamics and climate
feedbacks. Nature 451, 289–292.

Ichii, K., Hashimoto, H., Nemani, R., White, M., 2005. Modeling the interannual varia-
bility and trends in gross and net primary productivity of tropical forests from 1982
to 1999. Glob. Planet. Change 48, 274–286.

Jeong, S., Ho, C., Gim, H., Brown, M.E., 2011. Phenology shifts at start vs. end of growing
season in temperate vegetation over the Northern Hemisphere for the period 1982-
2008. Glob. Change Biol 17, 2385–2399.

Jönsson, P., Eklundh, L., 2004. TIMESAT-a program for analyzing time-series of satellite
sensor data. Comput. Geosci. 30, 833–845.

Jia, X., Zha, T., Gong, J., Wang, B., Zhang, Y., Wu, B., Qin, S., Peltola, H., 2016. Carbon
and water exchange over a temperate semi-arid shrubland during three years of
contrasting precipitation and soil moisture patterns. Agric. For. Meteorol. 228,
120–129.

Jung, M., Reichstein, M., Bondeau, A., 2009. Towards global empirical upscaling of
FLUXNET eddy covariance observations: validation of a model tree ensemble ap-
proach using a biosphere model. Biogeosciences 6, 2001–2013.

Jung, M., Vetter, M., Herold, M., Churkina, G., Reichstein, M., Zaehle, S., Ciais, P., Viovy,
N., Bondeau, A., Chen, Y., Trusilova, K., Feser, F., Heimann, M., 2007. Uncertainties
of modeling gross primary productivity over Europe: a systematic study on the effects
of using different drivers and terrestrial biosphere models. Glob. Biogeochem. Cycle
21, GB4021.

Kato, T., Tang, Y., 2008. Spatial variability and major controlling factors of CO2 sink
strength in Asian terrestrial ecosystems: evidence from eddy covariance data. Glob.
Change Biol. 14, 2333–2348.

Kruskal, W.H., Wallis, W.A., 1952. Use of ranks in one-criterion variance analysis. J. Am.
Stat. Assoc. 47, 583–621.

Li, Q., Yang, S., Xu, W., Wang, X.L., Jones, P., Parker, D., Zhou, L., Feng, Y., Gao, Y., 2015.
China experiencing the recent warming hiatus. Geophys. Res. Lett. 42, 889–898.

Li, S., Xiao, J., Xu, W., Yan, H., 2012. Modelling gross primary production in the Heihe
river basin and uncertainty analysis. Int. J. Remote Sens. 33, 836–847.

Li, Z., Yu, G., Xiao, X., Li, Y., Zhao, X., Ren, C., Zhang, L., Fu, Y., 2007. Modeling gross
primary production of alpine ecosystems in the Tibetan Plateau using MODIS images
and climate data. Remote Sens. Environ. 107, 510–519.

Mann, H.B., 1945. Nonparametric tests against trend. Econometrica 13, 245–259.
Monteith, J.L., 1972. Solar radiation and production in tropical ecosystems. J. Appl. Ecol.

9, 747–766.
Mosier, T.M., Hill, D.F., Sharp, K.V., 2014. 30-Arcsecond monthly climate surfaces with

global land coverage. Int. J. Climatol. 34, 2175–2188.
Nagai, S., Saigusa, N., Muraoka, H., Nasahara, K.N., 2010. What makes the satellite-based

EVI-GPP relationship unclear in a deciduous broad-leaved forest? Ecol. Res. 25,
359–365.

Nakano, T., Nemoto, M., Shinoda, M., 2008. Environmental controls on photosynthetic
production and ecosystem respiration in semi-arid grasslands of Mongolia. Agric. For.
Meteorol. 148, 1456–1466.

Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., Myneni,
R.B., Running, S.W., 2003. Climate-driven increases in global terrestrial net primary
production from 1982 to 1999. Science 300, 1560–1563.

Nogués-Bravo, D., Araújo, M.B., Errea, M.P., Martínez-Rica, J.P., 2007. Exposure of global
mountain systems to climate warming during the 21st century. Glob. Environ.
Change 17, 420–428.

Sabetraftar, K., Mackey, B., Croke, B., 2011. Sensitivity of modelled gross primary pro-
ductivity to topographic effects on surface radiation: a case study in the Cotter River
Catchment, Australia. Ecol. Model. 222, 795–803.

Saigusa, N., Yamamoto, S., Hirata, R., Ohtani, Y., Ide, R., Asanuma, J., Gamo, M., Hirano,

H.-j. Xu, et al. Agricultural and Forest Meteorology 276-277 (2019) 107628

14

https://doi.org/10.1016/j.agrformet.2019.107628
https://doi.org/10.1016/j.agrformet.2019.107628
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0005
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0005
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0005
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0010
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0010
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0010
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0015
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0015
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0015
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0015
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0015
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0015
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0020
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0020
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0025
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0025
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0025
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0030
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0030
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0030
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0035
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0035
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0035
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0040
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0040
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0040
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0045
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0045
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0045
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0050
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0050
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0050
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0055
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0055
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0060
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0060
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0060
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0065
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0065
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0065
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0070
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0070
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0070
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0075
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0075
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0075
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0075
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0080
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0080
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0085
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0085
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0085
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0090
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0090
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0090
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0095
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0095
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0100
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0100
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0100
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0100
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0105
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0105
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0105
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0110
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0110
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0110
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0110
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0110
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0115
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0115
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0115
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0120
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0120
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0125
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0125
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0130
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0130
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0135
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0135
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0135
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0140
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0145
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0145
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0150
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0150
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0155
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0155
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0155
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0160
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0160
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0160
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0165
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0165
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0165
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0170
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0170
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0170
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0175
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0175
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0175
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0180


T., Kondo, H., Kosugi, Y., Li, S., Nakai, Y., Takagi, K., Tani, M., Wang, H., 2008.
Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, tem-
perate, and tropical forests in East Asia. Agric. For. Meteorol. 148, 700–713.

Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat.
Assoc. 63, 1379–1389.

Sims, D.A., Rahman, A.F., Cordova, V.D., El-Masri, B.Z., Baldocchi, D.D., Bolstad, P.V.,
Flanagan, L.B., Goldstein, A.H., Hollinger, D.Y., Misson, L., Monson, R.K., Oechel,
W.C., Schmid, H.P., Wofsy, S.C., Xu, L., 2008. A new model of gross primary pro-
ductivity for North American ecosystems based solely on the enhanced vegetation
index and land surface temperature from MODIS. Remote Sens. Environ. 112,
1633–1646.

Sun, F., Lu, Y., Wang, J., Hu, J., Fu, B., 2015. Soil moisture dynamics of typical ecosys-
tems in response to precipitation: a monitoring-based analysis of hydrological service
in the Qilian Mountains. Catena 129, 63–75.

Sun, M., Liu, S., Yao, X., Guo, W., Xu, J., 2018. Glacier changes in the Qilian Mountains in
the past half-century: based on the revised first and second Chinese glacier inventory.
J. Geogr. Sci. 28, 206–220.

Turner, D.P., Ritts, W.D., Cohen, W.B., Gower, S.T., Running, S.W., Zhao, M., Costa, M.H.,
Kirschbaum, A.A., Ham, J.M., Saleska, S.R., Ahl, D.E., 2006. Evaluation of MODIS
NPP and GPP products across multiple biomes. Remote Sens. Environ. 102, 282–292.

Wagner, B., Liang, E., Li, X., Dulamsuren, C., Leuschner, C., Hauck, M., 2015. Carbon
pools of semi-arid Picea crassifolia forests in the Qilian Mountains (north-eastern
Tibetan Plateau). Forest Ecol. Manag. 343, 136–143.

Wang, H., Jia, G., Fu, C., Feng, J., Zhao, T., Ma, Z., 2010. Deriving maximal light use
efficiency from coordinated flux measurements and satellite data for regional gross
primary production modeling. Remote Sens. Environ. 114, 2248–2258.

Wang, X., Ma, M., Huang, G., Veroustraete, F., Zhang, Z., Song, Y., Tan, J., 2012.
Vegetation primary production estimation at maize and alpine meadow over the
Heihe River Basin, China. Int. J. Appl. Earth Obs. Geoinf. 17, 94–101.

Wilby, R.L., Wigley, T., 1997. Downscaling general circulation model output: a review of
methods and limitations. Prog. Phys. Geog. 21, 530–548.

Wohlfahrt, G., Hammerle, A., Haslwanter, A., Bahn, M., Tappeiner, U., Cernusca, A.,
2008. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a
temperate mountain grassland: effects of weather and management. J. Geophys. Res.-
Atmos. 113, D08110.

Xiao, X., Zhang, Q., Braswell, B., Urbanski, S., Boles, S., Wofsy, S., Moore, B., Ojima, D.,
2004. Modeling gross primary production of temperate deciduous broadleaf forest

using satellite images and climate data. Remote Sens. Environ. 91, 256–270.
Williams, M., Rastetter, E.B., Fernandes, D.N., Goulden, M.L., Shaver, G.R., Johnson, L.C.,

1997. Predicting gross primary productivity in terrestrial ecosystems. Ecol. Appl. 7,
882–894.

Xu, H., Wang, X., Zhang, X., 2016. Decreased vegetation growth in response to summer
drought in Central Asia from 2000 to 2012. Int. J. Appl. Earth Obs. Geoinf. 52,
390–402.

Xu, H., Wang, X., Yang, T., 2017. Trend shifts in satellite-derived vegetation growth in
Central Eurasia, 1982-2013. Sci. Total Environ. 579, 1658–1674.

Xu, H., Wang, X., Zhao, C., Yang, X., 2018. Diverse responses of vegetation growth to
meteorological drought across climate zones and land biomes in northern China from
1981 to 2014. Agric. For. Meteorol. 262, 1–13.

Yan, M., Tian, X., Li, Z., Chen, E., Li, C., Fan, W., 2016. A long-term simulation of forest
carbon fluxes over the Qilian Mountains. Int. J. Appl. Earth Obs. Geoinf. 52, 515–526.

Yao, Y., Wang, X., Li, Y., Wang, T., Shen, M., Du, M., He, H., Li, Y., Luo, W., Ma, M., Ma,
Y., Tang, Y., Wang, H., Zhang, X., Zhang, Y., Zhao, L., Zhou, G., Piao, S., 2018.
Spatiotemporal pattern of gross primary productivity and its covariation with climate
in China over the last thirty years. Glob. Change Biol. 24, 184–196.

Yao, Z., Zhao, C., Yang, K., Liu, W., Li, Y., You, J., Xiao, J., 2016. Alpine grassland de-
gradation in the Qilian Mountains, China-a case study in Damaying grassland. Catena
137, 494–500.

Yuan, W., Cai, W., Nguy-Robertson, A.L., Fang, H., Suyker, A.E., Chen, Y., Dong, W., Liu,
S., Zhang, H., 2015. Uncertainty in simulating gross primary production of cropland
ecosystem from satellite-based models. Agric. For. Meteorol. 207, 48–57.

Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., Dong, J., 2017. Data descriptor: a
global moderate resolution dataset of gross primary production of vegetation for
2000-2016. Sci. Data 4, 170165.

Zhang, Y., Yu, Q., Jiang, J., Tang, Y., 2008. Calibration of Terra/MODIS gross primary
production over an irrigated cropland on the North China Plain and an alpine
meadow on the Tibetan Plateau. Glob. Change Biol. 14, 757–767.

Zhao, C., Nan, Z., Cheng, G., 2005. Methods for modelling of temporal and spatial dis-
tribution of air temperature at landscape scale in the southern Qilian Mountains,
China. Ecol. Model. 189, 209–220.

Zhou, J., Cai, W., Qin, Y., Lai, L., Guan, T., Zhang, X., Jiang, L., Du, H., Yang, D., Cong, Z.,
Zheng, Y., 2016. Alpine vegetation phenology dynamic over 16 years and its cov-
ariation with climate in a semi-arid region of China. Sci. Total Environ. 572,
119–128.

H.-j. Xu, et al. Agricultural and Forest Meteorology 276-277 (2019) 107628

15

http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0180
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0180
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0180
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0185
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0185
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0190
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0190
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0190
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0190
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0190
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0190
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0195
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0195
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0195
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0200
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0200
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0200
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0205
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0205
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0205
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0210
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0210
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0210
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0215
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0215
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0215
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0220
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0220
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0220
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0225
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0225
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0230
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0230
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0230
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0230
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0235
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0235
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0235
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0240
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0240
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0240
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0245
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0245
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0245
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0250
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0250
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0255
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0255
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0255
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0260
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0260
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0265
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0265
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0265
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0265
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0270
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0270
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0270
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0275
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0275
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0275
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0280
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0280
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0280
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0285
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0285
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0285
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0290
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0290
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0290
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0295
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0295
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0295
http://refhub.elsevier.com/S0168-1923(19)30236-9/sbref0295

	Spatiotemporal differentiation of the terrestrial gross primary production response to climate constraints in a dryland mountain ecosystem of northwestern China
	Introduction
	Materials and methods
	Study area
	Data sources and preprocessing
	Remote sensing products
	Meteorological datasets
	EC-derived GPP data

	Methods
	Delta downscaling method
	Vegetation photosynthesis model
	Time trend analysis
	Correlation analysis
	Multivariable linear regression model
	Statistical analysis


	Results
	Validation of simulated climate and GPP data
	Changes in mean annual GPP across regions and biomes
	Interannual variations of monthly GPP
	Major climate drivers of monthly GPP interannual variability

	Discussion
	Evaluation of Delta downscaling method
	Assessment of VPM-GPP
	Contrasting trends in GPP
	The relationship between GPP and climate variables
	Research limitations

	Conclusions
	Acknowledgements
	Supplementary data
	References




