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Abstract 24 

Salinity is one of the major abiotic stresses that impacts plant growth and reduces the 25 

productivity of field crops. Compared to field plants, test tube plantlets offer a direct 26 

and fast approach to investigate the mechanism of salt tolerance. Here we examined 27 

the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. 28 

‘Longshu No. 3’) plantlets to gradient saline stress (0, 25, 50, 100 and 200 mM NaCl) 29 

with two consequent observations (two and six weeks, respectively). The results 30 

showed that, with the increase of external NaCl concentration and the duration of 31 

treatments, (1) the number of chloroplasts and cell intercellular spaces markedly 32 

decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and 33 

chloroplasts were gradually damaged to a complete disorganization containing more 34 

starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf 35 

proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) 36 

increased significantly, and (6) leaf malondialdehyde (MDA) content increased 37 

significantly and stomatal area and chlorophyll content decline were also detected. 38 

Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated 39 

that potato plantlets adapt to salt stress to some extent through accumulating 40 

osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, 41 

such as CAT and SOD. The outcomes of this study provide ultrastructural and 42 

physiological insights into characterizing potential damages induced by salt stress for 43 

selecting salt-tolerant potato cultivars. 44 

Keywords: Potato plantlets, Saline stress, Ultrastructure, Antioxidant defense system, 45 

Ion distribution 46 
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INTRODUCTION 48 

As a major abiotic stresses, salinity affects plant growth and significantly reduces 49 

crop yield (Zhang et al., 2010; Zhang and Shi 2013; Deinlein et al., 2014; Shabala et 50 

al., 2014). High soil salinity can lead to osmotic imbalance, ion-specific toxicity, 51 

alteration of composition and structure of membranes, and disruption of 52 

photosynthesis (Hasegawa et al., 2000; Zhang and Shi, 2013; Maathuis et al., 2014; 53 

Zhang et al., 2014; Cabot et al., 2014). Plants generally develop salt resistance 54 

mechanism and unique structures to survive under high saline-stress conditions 55 

(Deinlein et al., 2014; Gupta and Huang, 2014; Roy et al., 2014; Shabala et al., 2014). 56 

Therefore, a better understanding of the structural variations, ion distribution and 57 

physiological changes in crop plants induced by salinity should facilitate the 58 

identification of saline tolerance mechanisms (Roy et al., 2014).  59 

Potato (Solanum tuberosum L.), as the fourth most important food crop in the 60 

world, has been identified as moderately salt-sensitive or salt-tolerant (Katerji et al., 61 

2000). Under 50 mM NaCl treatment, potato growth decreased and tuber yield 62 

reduced to about 50%, while the growth of plants is completely inhibited at 150 mM 63 

NaCl (Hmida-Sayari et al., 2005). Bruns et al. (1990) found that the salt-induced 64 

changes were mainly observed in the chloroplasts, especially in the thylakoids. 65 

Different potato cultivars reacted differently to salt stress. Mitsuya et al. (2000) found 66 

the degradation of thylakoid membranes of chloroplast of sweet potato in vitro 67 

resulting from salt-induced oxidative stress (0 and 80 mM). In addition, ultrastructural 68 

changes at the cellular level in a salt-adapted potato callus lines grown in 150 mM 69 

NaCl (Queirós et al., 2011) demonstrated that salt-adapted potato cell line contained 70 

more large starch, reduced membrane system and no vesicles. Although the 71 

ultrastructural alterations induced by saline have been reported in many plant cells 72 

(Yamane et al., 2004; Miyake et al., 2006; Ferreira and Lima-Costa, 2008; Bennici 73 

and Tani, 2009; Bennici and Tani, 2012), information regarding the effects of salinity 74 

on potato cells cultured in vitro is not specified and is incomplete. 75 
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  Plants could sense changes of external environment and adapt to new conditions 76 

(Vij et al., 2007; Cabot et al., 2014; Deinlein et al., 2014). Plants have developed 77 

complex physiological and biochemical mechanisms to maintain a stable intracellular 78 

environment through accumulating various antioxidant enzymes and solute under salt 79 

stress (Wang et al., 2007; Zhang and Shi, 2013; Gupta and Huang, 2014; Roy et al., 80 

2014). The osmotic adjustment in plant can maintain water uptake and cell turgor, 81 

allowing regular physiological metabolism (Serraj et al., 2002; Han et al., 2014). 82 

Proline, as an important osmosis protective agent, contributes to osmotic adjustment, 83 

protecting cells from damage (Silva-Ortega et al., 2008; Ábrahám et al., 2010; Hou et 84 

al., 2013; Bojorquez-quintal et al., 2014; Gupta and Huang, 2014). Salt stress also 85 

caused overproduction of reactive oxygen species (ROS), leading to secondary 86 

oxidative stress (Nounjan et al., 2012; Mishra et al., 2011). ROS mainly generated 87 

from chloroplasts and mitochondria (Munns et al., 2008), attributed to membrane 88 

damage (Abdullahil-Baque et al., 2010), decrease of protein synthesis and inactivation 89 

of enzymes, seriously disrupting cell normal metabolism and inducing lipid 90 

peroxidation(Csiszár et al., 2012). Malondialdehyde (MDA) as a product of 91 

membrane lipid peroxidation could reflects oxidative damage to cell membrane (Koca 92 

et al., 2006; Yazici et al., 2007; Han et al., 2014). To avoid ROS-induced oxidative 93 

damage, plants could form antioxidant defense system to remove free radical and 94 

effectively avoid oxidative damage.Therefore, the increase of catalase (CAT) and 95 

superoxide dismutase (SOD) activity is correlated to the tolerance of plant to abiotic 96 

stresses (Hossain et al., 2004; Daneshmand et al., 2010; Hernández et al., 1993). 97 

Salt-tolerant potato could evolve a better protective mechanisms to detoxifying ROS 98 

by increasing the activity of antioxidant enzymes and content of proline (Arbona et al., 99 

2008; Cho et al., 2012). 100 

Higher accumulation of salt ions in leaves is very harmful for plant growth 101 

(Neocleous and Vasilakakis, 2007; Sabra et al., 2012; Khayyat et al., 2014; Liu et al., 102 

2014a). Naeini et al. (2006) reported that more Na+ accumulated in roots and more Cl- 103 

in leaves of pomegranates (Punica granatum) exposed to salt stress. Soil salinity 104 



5 

 

usually reduces K+ uptake by roots of higher plants (Zhang et al., 2010; Maathuis et 105 

al., 2014). Recent research suggests that maintaining a high level of K+/Na+ ratio is 106 

important to salt tolerance in glycophytes (Maathuis and Amtmann, 1999; Carden et 107 

al., 2003; Peng et al., 2004; Lv et al., 2011; Maathuis et al., 2014). A number of 108 

studies have demonstrated that salinity also reduced Ca2+ absorption and 109 

transportation in plant (Tattini and Traversi, 2009; Evelin et al., 2012; Zhang and Shi, 110 

2013; Liu et al., 2014a). Ca2+ has vital signal transduction function triggered by 111 

various environmental stresses. Especially, Ca2+ could alleviate Na+ toxicity on plants 112 

and has a regulation effect on ion selectivity absorption and transport (Zhu, 2002; 113 

Ben-Amor et al., 2010). Ca2+ is an essential component of the middle lamella and cell 114 

walls which participates in maintaining the stability of cell membrane, cell wall and 115 

membrane-bound proteins, preventing membrane damage and leakage, and stabilizing 116 

wall structure (Maathuis and Amtmann, 1999; Liu et al., 2014a). Scanning electron 117 

microscope (SEM) equipped with energy dispersive X-ray Spectroscopy (EDX) has 118 

been extensively utilized for analysis of the elements distributed in plant tissues. 119 

Moreover, ion concentrations analyzed by EDX is comparable to that derived from 120 

atomic absorption or flame photometry of whole samples (Ebrahimi and Bhatla, 2011; 121 

Ebrahimi and Bhatla, 2012).  122 

The present study was to investigate the anatomical response, ion distribution 123 

and physiological changes of potato plants to gradient salt (NaCl). Test tube plantlets 124 

were used in this study to allow a direct and fast approach to examine the 125 

physiological and biochemical mechanisms of salt tolerance. The present study will 126 

provide the insight of the anatomical response, in addition to physiological response, 127 

of in vitro propagated potato plantlets exposed to saline stress, and develop a useful 128 

method for screening salt-tolerant cultivars. 129 

 130 

MATERIALS AND METHODS 131 

PLANT MATERIAL AND TREATMENTS 132 
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A local potato cultivar ‘Longshu No. 3’, released in 2002 by Gansu Academy of 133 

Agricultural Sciences, China, was used in this study. This cultivar has been largely 134 

grown in Northwestern China because of its moderate resistance to low temperature, 135 

drought and salinity. Potato plantlets were propagated in solidified Murashige and 136 

Skoog (MS) medium. A total of 6 plantlets were cultured in each triangular flask 137 

under 16h/8h photoperiods at 200 µmol/m2/s and 23 ± 2 oC. For salt stress treatment, 138 

plantlet stems with at least two leaves were transferred to the MS medium containing 139 

NaCl at concentrations of 0 (control), 25, 50, 100 and 200 mM, respectively. Root, 140 

stem and leaf samples were collected two or six weeks after treatments for analysis. 141 

There were six plantlets in six triangular flasks for each treatment. 142 

TRANSMISSION ELECTRON MICROSCOPY 143 

At each sampling time, the fully expanded uppermost leaves of potato plantlets 144 

were collected and fixed for 3 hours at room temperature with 2% glutaraldehyde in 145 

100 mM sodium cacodylate buffer with a pH value of 7.4 (Sabatini et al., 1963). 146 

Samples were post-treated in 1% (w/v) OsO4, similarly buffered for 6 h at room 147 

temperature, dehydrated in a graded ethanol series and propylene oxide, and 148 

infiltrated and embedded in Spurr’s epoxy resin (Spurr, 1969). Ultrasections were 149 

obtained using a LKBV ultramicrotome and stained with uranyl acetate and lead 150 

phosphate. Images were observed and generated using a transmission electron 151 

microscope (JEM-1230 JEOL, Japan). The size of the intercellular space and cell wall 152 

was measured manually on the printed micrographs.  153 

X-RAY MICROANALYSIS OF IONS 154 

Root, shoot and leaf samples of each treatment were washed with distilled water, 155 

respectively. The middle sections of plant tissues were dipped in 5% agar, inserted to 156 

a depth of 1.0 cm in a copper holder, and sliced freehand with a razor blade to obtain 157 

transverse sections, and immediately frozen in liquid nitrogen. The samples were 158 

freeze-dried in vacuum and stored in a desiccator, followed by carbon coated with a 159 

high vacuum sputter coater and sputter-coated with gold in an argon atmosphere. 160 

Samples were analyzed in an scanning electron microscope (JSM-5600LV, JEOL, 161 
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Japan) equipped with energy dispersive X-ray spectroscopy (INCA X-Max 80, 162 

Oxford Instruments) detector. The accelerating voltage was 10kV. The counting time 163 

for each analysis was 60 s and the data were expressed as counts per second (cps) of 164 

an element peak after subtraction of the background. Then, these spectra were 165 

transformed to normalized data. All the detectable elements were transformed into the 166 

relative element weight. Counts per second of K, Na and Cl were discerned by weight 167 

percentage in tissues. Five location spots of the same tissue of each section were 168 

analyzed. 169 

PHYSIOLOGICAL ASSAYS 170 

Free proline and malondialdehyde content from plantlet were extracted and quantified 171 

following the ninhydrin-based colorimetric assays (Delauney et al., 1992) and 172 

thiobarbituric acid (Hodges et al., 2014), respectively. Activities of SOD and CAT 173 

were determined according to the ultraviolet absorption method assays of 174 

Giannopotitis and Ries (1977) and Stewart and Bewley (1980). To measure the 175 

stomatal aperture, leaf samples (2×2 mm) were collected from plantlets treated with 176 

or without NaCl stress. The lower epidermis of leaves was collected by scotch tape 177 

and examined under a compound Digital Microscope (Motic) after stained with 0.1% 178 

I-KI. The morphological parameters of stomata [guard cell length - L (μM) and guard 179 

cell width - W (μM)] magnified 200 ×, were measured with Motic Images Advanced 180 

3.2. Stomatal area (S) was calculated as the product of L and W. Leaf chlorophyll 181 

content was determined spectrophotometrically in 80% acetone as described by Arnon 182 

(1949). 183 

DATA ANALYSIS 184 

Parameter data were presented as means with standard deviations (n = 6). Data were 185 

subjected to One-Way ANOVA and Duncan’s multiple range tests for each parameter 186 

at P < 0.05 using SPSS 13.0. 187 

 188 

RESULTS  189 
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EFFECTS OF SALINE STRESS ON THE ULTRASTRUCTURE OF LEAF 190 

MESOPHYLL CELLS 191 

For two weeks of control plantlets (without salt stress), the ultrastructural distortion of 192 

mesophyll cells and chloroplasts was not observed. The structure of mesophyll cell 193 

was intact and the cell membrane was in close contact with the cell wall. Moreover, 194 

there was large intercellular space in mesophyll cells (Figure 1A). After six weeks 195 

growth, integrated chloroplasts of control plantlets were still closely arranged along 196 

plasma membrane (Figure 1B, Table 1).  197 

For plantlets with two weeks of 25 mM NaCl treatment, mesophyll cell walls were 198 

twisted and plasma membrane crimpled remarkably. A small proportion of the 199 

chloroplasts with distended thylakoids were apart from the cell wall and membranous 200 

invagination was observed (Figure 1C). After six-week treatment More starch grains 201 

were attached to the chloroplasts (Figure 1D) and intercellular space decreased 202 

(Table 1). For plantlets grown in 50 mM NaCl for two weeks, mesophyll cells 203 

showed some alterations (Figure 1E). The number of chloroplast decreased 204 

dramatically. Plasmolysis in some cells was accompanied by a reduction in mesophyll 205 

intercellular spaces. Six weeks later, chloroplasts showed irregular shape and complex 206 

vesiculation in the vacuoles was observed. Moreover, a number of cells appeared to 207 

be linked together without space (Figure 1F, Table 1). When plantlets were exposed 208 

to 100 mM NaCl for two weeks, serious plasmolysis was observed. Membranous 209 

invaginations resulted in numerous vesicles. Some chloroplasts embedded together 210 

(Figure 1G). Six weeks later, plasmolysis occurred severely accompanied by the 211 

presence of more vesicles in the vacuole. Chloroplasts moved toward the center of the 212 

cell (Figure 1H). The most dramatic alterations were observed in plantlets treated 213 

with 200 mM NaCl for two weeks. Membrane structure was severely damaged, 214 

characterized by severe membranous invagination (Figure 1I). After six weeks of 200 215 

mM NaCl treatment, cell walls ruptured and the whole cell disorganized (Figure 1J).  216 

EFFECTS OF SALINE STRESS ON THE ULTRASTRUCTURE OF 217 

CHLOROPLASTS 218 
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For two weeks of control plantlets, integrated chloroplasts with few and small starch, 219 

containing compactly arranged thylakoids and well compartmentalized grana stacks 220 

with distinct grana lamellaes parallel to the chloroplasts’ long axes, were observed 221 

(Figure 2A). Six weeks later, the membrane system was complete. The grana and 222 

stromal lamellae of chloroplast closely arranged and compacted thylakoids (Figure 223 

2B).  224 

When exposed to 25 mM NaCl for two weeks, the cell walls were thickened 225 

(Figure 2C, Table 1). The outer membrane of the chloroplast was vague. After six 226 

weeks of 25 mM NaCl treatment, the swelling of the thylakoids became obvious. The 227 

arrangement of lamella remained consistent, but showed a slight bend (Figure 2D). 228 

After two weeks of 50 mM NaCl treatment, chloroplast envelope was partially 229 

fragmented and evaginated to form complex vesicles (Figure 2E). Six weeks later, 230 

chloroplast envelopes disrupted with outer membranes disorganized. Grana lamella 231 

loosened with severely swollen thylakoids and space between lamella increased 232 

(Figure 2F). For plantlets treated with 100 mM NaCl for two weeks, the cell walls 233 

were much thicker (Table 2). Chloroplast envelope disintegrated and the grana 234 

thylakoid dissolved partially with reduced grana stacking, characterized by the 235 

presence of enlarged plastoglobuli and starch grains (Figure 2G). Six week later, the 236 

orientation of grana changed. Lamellar stacking decreased and dissolved dramatically. 237 

Membrane system was indistinct (Figure 2H). The most serious impact was observed 238 

when plantlets were treated with 200 mM NaCl. Some chloroplasts disintegrated with 239 

inclusions effused for plantlets treated with 200 mM NaCl for two weeks (Figure 2I). 240 

Six weeks later, the grana and stromal lamella of round chloroplasts with some starch 241 

grains digested basically, thylakoid membranes adhered to each other, while 242 

thylakoids disintegrated, cavitated, and even gradually disappeared (Figure 2J). 243 

EFFECTS OF SALINE STRESS ON ION DISTRIBUTION IN POTATO 244 

PLANTLET TISSUES 245 

Na and Cl contents in leaves were relatively higher than that in stems and roots for all 246 

treatments. After two week treatments, Na relative content in leaves was 5.1, 4.2, 3.4, 247 
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3.0 and 1.9 times of that in roots at 0, 25, 50, 100, 200 mM NaCl treatments, 248 

respectively; Cl relative content in leaves was 1.2, 4.4, 2.5, 6.4 and 5.0 times of that in 249 

roots, respectively. After six week treatments, with the increase of NaCl in growth 250 

environment, the relative contents of Na and Cl in tissues were higher than those at 251 

two weeks, respectively. In addition, Cl relative content remained higher than Na 252 

content for the same treatment and for the same organ tissue, which follows the 253 

similar trend as at two weeks. After six week treatments, Na relative content in leaves 254 

was 1.7, 1.6, 2.0, 1.7 and 1.5 times of that in roots at 0, 25, 50, 100, 200 mM NaCl 255 

treatments, respectively; Cl relative content in leaves were 2.3, 1.7, 1.8, 2.0 and 1.2 256 

times of that in roots at corresponding NaCl treatments, respectively. These results 257 

indicated that Na and Cl were mainly distributed in leaves of potato plantlets. (Figure 258 

3A, B, C, D, E and F).  259 

In contrast, K relative content in roots, stems and leaves showed a decreasing 260 

trend with the increase of external NaCl concentration. Accumulation of K in stems 261 

was reduced, particularly in leaves. After two weeks of salt treatment, K relative 262 

content in roots was 1.1, 1.3, 1.3, 3.0 and 2.1 times of that in leaves at 0, 25, 50, 100, 263 

200 mM NaCl treatments, respectively. Six weeks later, K relative content in roots, 264 

stems and leaves decreased compared to that at two weeks. K relative content in roots 265 

was 1.3, 1.5, 1.6, 2.7 and 1.8 times of that in leaves at 0, 25, 50, 100, 200 mM NaCl 266 

treatments, respectively (Figure 3G, H and I). The comparison of K distribution in 267 

the different parts of potato plantlets showed that salinity seriously reduced K 268 

allocation towards leaves. 269 

The Na/K ratio dramatically increased, especially in leaves after treated with 270 

various concentrations of NaCl. After two weeks of treatments, Na/K ratio 271 

significantly increased by 2.0, 4.3, 6.0 and 19.0 times in roots, 1, 2, 3.1 and 5.1 times 272 

in stems, and 1.6, 2.6, 8.9 and 12.1 times in leaves, at 25, 50, 100, 200 mM NaCl 273 

treatments, respectively, compared to that in control tissues, After six-week treatment, 274 

compared to the corresponding organs of control plantlets, Na/K ratio significantly 275 

increased by 1.7, 2.1, 5.5 and 7.9 times in roots, 1.3, 1, 7 and 9.1 times in stems, 276 
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and1.8, 3.3, 11.7 and 9.7 times in leaves at corresponding NaCl treatments, 277 

respectively. Potato plantlets treated with salt for six weeks had higher Na/K ratio in 278 

the relevant organs than those treated for two weeks except for leaf Na/K ratio at 200 279 

mM NaCl concentration (Figure 3J, K and L).  280 

EFFECTS OF SALINE STRESS ON LEAF FREE PROLINE CONTENT, CAT 281 

AND SOD ACTIVITIES AND MDA CONTENT 282 

Salt stress significantly increased free proline levels in leaves (Figure 4). After two 283 

weeks of treatment, proline content significantly increased by 1.6, 1.9, 3.4 and 4.5 284 

times at 25, 50, 100 and 200 mM NaCl treatments, respectively, compared to control 285 

(P < 0.05). After six weeks of treatments, proline significantly content increased by 286 

0.8, 3.1, 4.7 and 3.7 times, respectively (P < 0.05). Proline content decreased 287 

significantly at 200 mM NaCl compared to that at 100 Mm NaCl (P < 0.05). Leaf 288 

proline content in plantlets treated for six weeks by 50, 100 and 200 mM NaCl was 289 

significant higher than that in plantlets treated for two weeks (P < 0.05). 290 

Salt stress increased the activity of the antioxidant enzymes. After two week 291 

treatment, compared to control, CAT activity significantly increased by 28.9%, 57.9%, 292 

96.8% and 63.4% at 25, 50, 100 and 200 mM NaCl, respectively; while SOD activity 293 

significantly increased by 18.6%, 41.2%, 38.4% and 52.9%, respectively (P < 0.05). 294 

After six weeks, CAT and SOD activities significantly increased by 50.0%, 80.5%, 295 

102.6% and 13.6%, and 13.1%, 29.5%, 29.6% and 23.9% at 25, 50, 100 and 200 mM 296 

NaCl, respectively, compared to corresponding control (P < 0.05). Leaf CAT activity 297 

in plantlets treated with 200 mM NaCl for two and six weeks and SOD activity for six 298 

weeks decreased significantly compared to that in plantlets treated with 100 mM NaCl 299 

(P < 0.05). Also, activities of leaf CAT and SOD in plantlets treated for six weeks 300 

were significantly higher than those in plantlets treated for two weeks except for 200 301 

mM NaCl treatment (P < 0.05) (Figure 5). 302 

Leaf MDA content was used as an indicator of oxidative damage by salt stresses. 303 

After two week treatment, MDA content significantly increased by 0.8, 1.0, 1.8 and 304 

2.0 times with the increase of external NaCl concentration compared to control 305 



12 

 

plantlets; after six week treatment, MDA content sharply increased by 0.7, 1.1, 1.7 306 

and 2.4 times with the increase of salinity (P < 0.05). Leaf MDA content in plantlets 307 

treated for six weeks were significantly higher than that in plantlets treated for two 308 

weeks (P < 0.05) (Figure 6). 309 

EFFECTS OF SALINITY STRESS ON LEAF STOMATAL AREA AND 310 

CHLOROPHYLL CONTENT 311 

Two weeks of salt treatment reduced stomatal area significantly by 18.0%, 35.4%, 312 

61.5% and 86.7% at 25, 50, 100 and 200 mM NaCl concentrations, respectively, 313 

compared to control (P < 0.05). Six weeks of salt treatment dramatically reduced 314 

stomatal area by 70.3%, 88.2%, 91.6% and 99.4% with the increase of NaCl 315 

concentration (P < 0.05). Stoma was almost closed after six weeks of 200 mM NaCl 316 

treatment (Figure 7A). 317 

The trend of changes for chlorophyll content was similar to that for stomatal area. 318 

After two weeks of salt treatment, leaf chlorophyll content decreased gradually by 319 

24.8%, 44.2%, 65.5% and 70.8% with the increase of NaCl concentration, compared 320 

to control (P < 0.05). After six weeks of salt treatment, chlorophyll content sharply 321 

decreased by 33.9%, 68.3%, 88.1% and 93.6% with the increase of NaCl 322 

concentration (P < 0.05), and was much lower than that at two weeks under 323 

corresponding salt stresses (Figure 7B).  324 

At the whole plantlet level, NaCl treatments inhibited potato plantlet growth. The 325 

height of seedlings gradually decreased with increase of external NaCl concentration. 326 

After six weeks of treatment, severe salt stress (200 mM NaCl) induced a greater 327 

decline in shoot growth and root development of potato plantlets (Figure S1).  328 

 329 

DISCUSSION 330 

SALINITY INDUCED ULTRASTRUCTURAL CHANGES OF LEAF 331 

MESOPHYLL CELLS AND CHLOROPLASTS 332 

In present study, high levels of Na and Cl, and low level of K were distributed in 333 

leaves.  The changes in chemical contents could result in ultrastructural alteration in 334 
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leaf cells. Three salt-stress related alterations were observed. Firstly, the number of 335 

chloroplasts displaying swelled and distorted thylakoids decreased, accompanied by 336 

chloroplasts moving to the cell center. This chloroplast change is a typical effect of 337 

salinity as previously observed in salt-stressed Cucumis sativus L. (Shu et al., 2013). 338 

Secondly, cell walls thickened and plasmolysis occurred and the intercellular spaces 339 

of cell decreased with the increase of external salt concentration, which was also 340 

reported in potato cultivars (Bruns and Hecht-Buchholz, 1990; Navarro et al., 2007). 341 

Thirdly, lamella became disordered, loosened and even indistinct, with reduced grana 342 

stacking because of inhibition of protein synthesis. Krzesłowska (2010) has reported 343 

that thickened cell wall could be as a barrier, protecting cell from toxicity of trace 344 

metals. So cell wall may function and limit passive Na and Cl enter into protoplast, 345 

maintaining structural integrity of the cell in the early low salt stress. It has been 346 

known salt stress can lead to osmotic damage. Na+ could be used directly for osmotic 347 

adjustment to maintain cell turgor and photosynthetic activity under low external salt 348 

concentration (Yousfi et al., 2010; Ebrahimi and Bhatla, 2012; Ma et al., 2012). 349 

However, with the increase of salt levels (NaCl concentration > 50 mM), high 350 

concentrations of Na and Cl accumulated in leaf apoplast, leading to water loss of cell, 351 

plasmolysis and decrease of intercellular spaces in the leaves of potato plantlets. The 352 

present study observed invaginated membrane system forming numerous vesicles 353 

under salt treatments supporting observations by Kim and Park (2010), whilst 354 

contrary to Queirós et al. (2011) in which no vesicle was found in salt-adapted potato 355 

cell line. Vacuolation may be a response to membrane system damage induced by 356 

reactive oxygen species (ROS) caused by toxicity of Na and Cl (Kim and Park, 2010). 357 

ROS lead to the increase of plasma membrane permeability and extravasations of 358 

soluble substances, causing osmotic water imbalance, aggravating plasmolysis. Since 359 

membrane vesicles have Na+/H+ antiporter (Blumwald et al., 2000) and cell can 360 

sequester ion into vacuole (Kim and Park, 2010), vesicles may compartmentalize Na 361 

and Cl and migrate to walls. When plants were exposed to high NaCl concentration 362 

(100 mM), membrane disappeared. Salt inhibits absorption of Ca2+, further leading to 363 
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instability of cell membrane and cell wall. Integral of membrane is essential in ions 364 

absorption and distribution. The destruction of the membrane structure inevitably 365 

disrupted ion homeostasis, affecting osmotic potential and inducing ion toxicity.  366 

Disorganization of whole cells was accompanied by disintegrated chloroplasts 367 

having more starch and dissolved stroma lamella under 200 mM NaCl. It was 368 

speculated that starch synthesis plays a role in lessening the hyperosmotic stress as 369 

osmoticum. A total disorganization of the protoplast in callus cells was reported in 370 

other plants, possibly caused by dehydration (Bennici and Tani, 2012). Disintegration 371 

of chloroplasts and mesophyll cells end the photosynthesis, thus, maintaining 372 

structural integrity is necessary in plant growth (Bennici and Tani, 2012).  373 

SALINITY CHANGED ION HOMEOSTASIS IN POTATO PLANTLETS 374 

It has been known that the total Na+ and Cl- content increased under salt in potato cell 375 

line, and K+/ Na+ ratio was a little higher in the adapted line (Queirós et al., 2011). 376 

Ruan et al. (2005) showed that Na+ accumulation decreased from the roots to leaves 377 

in Kosteletzkya virginica. Higher Na+ distributed in roots than in leaves in maize 378 

under salt stress (Azevedo-Neto et al., 2004). In Capsicum chinense, more Na+ was 379 

restricted in roots (Bojorquez-Quintal et al., 2014). Higher levels of Na+ in roots can 380 

maintain the normal osmotic potential and prevent it from being transported to the 381 

leaves, therefore avoiding the accumulation of Na+ in the leaves (Tester and 382 

Davenport, 2003; Munns and Tester, 2008; Xue et al., 2013). Queiros et al. (2009) 383 

reported that higher Na+ distributed in roots, inhibiting Na+ transport to leaves in 384 

potato cell. In present study, the distribution of Na and Cl increased from roots to 385 

stems and leaves in potato plantlets, indicating that potato is not a salt exclusion plant 386 

and has lower capacity to retain saline ions in their roots. High ions in leaves leaded 387 

to osmotic damage and oxidative stress, affecting physiological and biochemical 388 

metabolism. In addition, as a whole more Cl accumulated in potato tissue than Na, 389 

indicating the absorption of Cl- was higher than Na, which is similar to the findings in 390 

sunflower (Ebrahimi and Bhatla, 2011) and in Clions (Greenway and Munns, 1980). 391 

Higher Cl- accumulation lead to more serious and instant damage under salt stress 392 
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(Yao and Fang, 2008). In our study, the absorption of Na and Cl in roots, stems and 393 

leaves of potato plantlet was enhanced with the increases of NaCl concentration, and 394 

the relative contents of Na and Cl were the highest in leaves, and lowest in roots. 395 

K+ participates in many cellular functions, such as protein synthesis, enzyme 396 

activation and osmotic regulation (Peng et al., 2004; Takahashi et al., 2007; Amtmann 397 

et al., 2008; ). Therefore, the regulation of K+ homeostasis plays a critical role in plant 398 

tolerance to abiotic stresses (Ashley et al., 2006; Wang and Wu, 2010; Anschütz et al., 399 

2014; Shabala and Pottosin, 2014; Demidchik, 2014). Salinity induced plant 400 

nutritional disorders, such as the suppression of K+ uptake (Kader and Lindberg, 2005; 401 

Kronzucker et al., 2006; Shabala and Cuin, 2008). Bojorquez-Quintal et al. (2014) 402 

suggested that more K+ accumulated in roots is correlated with the salt tolerance of 403 

Capsicum chinense. In present study, salt stress dramatically reduced K+ uptake and 404 

accumulation, especially in leaves, resulting in increased Na/K ratio in all tissues with 405 

the increase of external salt concentration and the duration of treatments.  406 

PHYSIOLOGICAL MECHANISM OF POTATO PLANTLETS ADAPTING 407 

TO GRADIENT SALINE STRESS. 408 

Salinity leads to physiological changes in plant, especially osmotic and oxidative 409 

stress (Zhang and Shi, 2013). The accumulation of osmoprotectants is important for 410 

plant to adapt to osmotic stress (Apse and Blumwald, 2002; Chan et al., 2011; Rivero 411 

et al., 2014; Waditee et al., 2007). Proline, an important compatible osmolyte in plants, 412 

could maintain cell turgor and function in osmotic adjustment to improve plant 413 

tolerance to osmotic stress (Ábrahám et al., 2010; Huang et al., 2013). In many plants, 414 

the accumulation of proline could lead to salt tolerance and has even been used as an 415 

important trait in selecting tolerant species or genotypes (Ashraf and Harris, 2004; 416 

Khelil et al., 2007; Ruffino et al., 2010). Recently, Bojorquez-Quintal et al. (2014) 417 

found that more proline was accumulated in leaves of salt-tolerant habanero pepper 418 

(Capsicum chinense Jacq.) cultivar (Rex) than in salt-sensitive one (Chichen-Itza) 419 

under 150 mM NaCl treatment. In our study, the levels of free proline increased 420 

significantly with the increase of external salt concentration and with the duration of 421 
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treatments except for a little decline at 200 mM NaCl after six-week treatment 422 

(Figure 3). The reason may be that 200 mM induced excessive damage to plant cells 423 

and inhibited proline synthesis.  424 

Antioxidant enzymes in plant can remove ROS and alleviate oxidative damage 425 

(Krantev et al., 2008; Mishra et al., 2011). It has been known that the higher activities 426 

of CAT and SOD could improve plant tolerance to salinity and K+-deficiency 427 

conditions (Wang et al., 2010; Zhou et al., 2014). It was found that SOD activity was 428 

significantly higher in the leaves of salt-tolerant wild tomato (Lycopersicon pennellii) 429 

than that of salt-sensitive cultivated tomato (Lycopersicon esculentum) after 12 and 84 430 

d of salt treatment (140 mM NaCl) (Koca et al., 2006). Similarly, salt-tolerant 431 

Plantago maritima showed a better protection mechanism against oxidative damage 432 

caused by salt stress by its higher induced activities of CAT, SOD, glutathione 433 

reductase (GR) and peroxidase (POX) than the salt-sensitive P. media (Sekmen et al., 434 

2007). Co-expression of the Suaeda salsa CAT and glutathione S-transferase (GST) 435 

genes enhanced the active oxygen-scavenging system that led to improved salt 436 

tolernace in transgenic rice, resulting from not only increased CAT and GST activities 437 

but also the combined increase in SOD activity (Zhao and Zhang 2006). Jing et al. 438 

(2014) reported that overexpression of mangrove (Kandelia candel) copper/zinc 439 

superoxide dismutase gene (KcCSD) enhanced salinity tolerance in tobacco: 440 

KcCSD-transgenic lines were more Na+ tolerant than wild-type (WT) tobacco in terms 441 

of lipid peroxidation, root growth, and survival rate; Na+ injury to chloroplast was less 442 

pronounced in transgenic tobacco plants due to enhanced SOD activity by an 443 

increment in SOD isoenzymes under 100 mM NaCl stress from 24 h to 7 d; catalase 444 

activity rose in KcCSD overexpressing tobacco plants and transgenic plants better 445 

scavenged NaCl-elicited reactive oxygen species (ROS) compared to WT ones. In 446 

present study, the activities of CAT and SOD in leaves of potato plantlets 447 

significantly increased with the increase of NaCl concentration (0~100 mM) in 448 

medium. When exposed to 200 mM NaCl, especially after six weeks, leaf cells were 449 
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severely damaged, even disorganized (Figure 1), leading to the damage of cellular 450 

structure or alterations of metabolism, and reducing the synthesis of CAT and SOD.  451 

Soil salinity is known to increase the level of reactive oxygen species in plant 452 

leaves and MDA is a major product of membrane lipid peroxidation (Mittova et al., 453 

2004; Koca et al., 2006; Yazici et al., 2007). Therefore, leaf MDA content could 454 

represent the degree of cell membrane damage and is usually used to evaluate plant 455 

salt tolerance (Luna et al., 2000; Miao et al., 2010; Han et al., 2014). In our study, leaf 456 

MDA content increased significantly with the increase of external salt concentration 457 

after two-week treatment and even increased more rapidly after six-week treatment. 458 

However, the activities of SOD and CAT may not enough to eliminate ROS, resulted 459 

in large production of MDA under higher salt stress (200 mM). 460 

SALINITY REDUCED LEAF STOMATAL AREA AND CHLOROPHYLL 461 

CONTENT 462 

Chlorophyll is essential for photosynthesis, and the increase of chlorophyll content 463 

can reflect the increase of photosynthetic activity (Yamori et al., 2006). Ben et al. 464 

(2010) and Su et al. (2011) suggested that the accumulation of chlorophyll content 465 

could enhance plant salt tolerance. In the present study, leaf chlorophyll content 466 

gradually decreased with the increase of NaCl treatment and duration, which could 467 

result from the inhibition of chlorophyll synthesis caused by chloroplast damage.  468 

Gas exchange through stoma play important role in carbon assimilation 469 

(Wilkinson and Davies, 2002). Salt stress decreases leaf stomatal area by reducing 470 

leaf water content and leaf turgor induced by ABA signal (Wilkinson and Davies, 471 

2002). Therefore, stomatal conductance was correlated to salinity stress (Liu et al., 472 

2014b). In our study, salt stress seriously induced stomatal closure. Reduced CO2 473 

diffusion caused by stomatal closure lead to suppression of photosynthesis, affecting 474 

plant growth (Figure S1). 475 

In conclusion, the adaptation of plants to salt stress is a complex process at 476 

cellular, biochemical and physiological levels. In the present study, several 477 

parameters were analyzed to demonstrate ultrastructural and physiological responding 478 
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mechanisms of potato (Solanum tuberosum L.) plantlets to gradient saline stress 479 

(Figure 8). We found that with the increase of external NaCl concentration and the 480 

duration of treatments, the number of chloroplasts and cell intercellular space 481 

markedly decreased, cell wall thickened and even ruptured, and mesophyll cells and 482 

chloroplasts were gradually damaged to a complete disorganization. Above 483 

ultrastructural changes may be induced by the increased concentrations of Na+ that 484 

was transported into cytosol probably through non-selective cation channels (NSCCs),  485 

high-affinity K+ transporters (HKTs, probably HKT1;2; HKT1;4; HKT1;5 and 486 

HKT2;1) and permeated directly across plasma membrane, and Cl- that was probably 487 

transported by cation-Cl− cotransporter (CCC) (Apse and Blumwald, 2007; Plett and 488 

Moller, 2010; Zhang et al., 2010; Zhang et al., 2013; Almeida et al., 2014ab; 489 

Maathuis, 2014; Maathuis et al., 2014). More and more K+ was probably transported 490 

out of the cell by K+ outward-rectifying channels (KORs) activated by membrane 491 

depolarization (DPZ) (Chen et al., 2007; Sun et al., 2009; Lu et al., 2013; Demidchik 492 

2014; Demidchik et al. 2014; Lai et al. 2014). Leaf MDA content increased 493 

significantly due to all membrane lipid peroxidation induced by increasing and 494 

continuous salt stress, which also induced stomata closure and chlorophyll content 495 

decline. Potato plantlets showed adaptation ability to moderate salt stress through Na+ 496 

efflux or extrusion by plasma membrane Na+/H+ antiporter (salt overly sensitive, 497 

SOS1) motivated by plasma membrane ATPase (PM-ATPase), vacuolar Na+ 498 

compartmentation by tonoplast Na+/H+ antiporter (NHX1) driven by vacuolar ATPase 499 

(V-ATPase) and H+-pyrophosphatase (VP1), accumulating osmoprotectants such as 500 

proline, and improving the activities of antioxidant enzymes (CAT and SOD). This 501 

work provided both anatomical and physiological data for characterization of 502 

damages induced by salinity and the method could be used for selecting salt-tolerant 503 

potato cultivars. 504 
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 905 

Table 1 Size of the Intercellular space and cell wall of the Mesophyll cell. 906 

Values are means ± standard deviation (n = 6). Means in each line followed by 907 

different letters were statistically different (P < 0.05) by Duncan's multiple range 908 

tests. NA, not available. At 200 mM, parameters could not be obtained due to cell 909 

wall rupture and cell disintegration. 910 

NaCl (mM) 0 25 50 100 200 

Intercellular space (μm) 6.41 ± 0.57 a 2.34 ± 0.07 b 0 ± 0 c 0 ± 0 c NA 

Cell wall (μm) 0.18 ± 0.02 a 0.19 ± 0.01 a 0.18 ± 0.00 a 0.26 ± 0.02 b NA 

 911 

912 
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Figure Legends 913 

 914 

FIGURE 1. Ultrastructural changes of mesophyll cells. (A) Two weeks of 915 

non-salinity: intact mesophyll cells Two weeks of non-salinity treatment. (B) Six 916 

weeks of non-salinity: more chloroplasts were present in mesophyll cells and cellular 917 

intercellular spaces increased for six weeks of 25 mM NaCl treatment. (C) Two 918 

weeks of 25 mM NaCl: cell walls were twisted, and the plasma membrane was 919 

apparently crimpled. Note chloroplasts were apart from the cell walls with 920 

membranous invaginations (black arrows). (D) Six weeks of 25 mM NaCl: mesophyll 921 

cell-contained chloroplasts have more starch grains. (E) Two weeks of 50 mM NaCl: 922 

mesophyll cells displayed plasmolysis (white arrow) and reduced intercellular spaces 923 

(black arrow). (F) Six weeks of 50 mM NaCl: complex vesiculation (black arrows), 924 

and dramatically reduced numbers of chloroplasts. (G) Two weeks of 100 mM NaCl: 925 

plasmolysis (white arrow), numerous vesicles (black arrows) and embedded 926 

chloroplasts. (H) Six weeks of 100 mM NaCl: cells showed severe plasmolysis (black 927 

arrows) and more vesicles and chloroplasts moved towards the cell center. (I) Two 928 

weeks of 200 mM NaCl: cells displayed severely damaged membrane systems, with 929 

severe membranous invagination (black arrow). (J) Six weeks of 200 mM NaCl: cell 930 

walls ruptured, and whole cells disintegrated. Note: ch, chloroplast; g, grana; pl, 931 

plastoglobuli; st, starch grains; w, cell wall; is, intercellular space; v, vesicle. 932 

 933 

FIGURE 2. Ultrastructural changes of chloroplast in mesophyll cell. (A) Two 934 

weeks of non-salinity: ellipse- or spindle-shaped chloroplast with few and small 935 

starch. (B) Six weeks of non-salinity: chloroplast structure was complete. (C) Two 936 

weeks of 25 mM NaCl: chloroplast with vague outer membranes (black arrows) 937 

showed distended thylakoids (white arrows). (D) Six weeks of 25 mM NaCl: obvious 938 

swelling of the thylakoid (white arrow). (E) Two weeks of 50 mM NaCl: chloroplast 939 

envelope evagination, forming vesicles (black arrow). (F) Two weeks of 50 mM NaCl: 940 

chloroplast envelope disruption (black arrow) and distorted lamella (white arrow). (G) 941 
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Two weeks of 100 mM NaCl: chloroplast envelope disintegration (black arrow) and 942 

thicker cell walls and partially dissolved grana thylakoid. (H) Six weeks of 100 mM 943 

NaCl: envelope (black arrow) and lamellar structure (white arrow) partly dissolved. (I) 944 

Two weeks of 200 mM NaCl: chloroplast disintegrated with inclusions effused (black 945 

arrows). (J) Six weeks of 200 mM NaCl: the grana and stromal lamella of chloroplast 946 

digest basically (black arrow), while thylakoids disintegrate and cavitate gradually 947 

(white arrows). Note: ch, chloroplast; g, grana; pl, plastoglobuli; st, starch grains; w, 948 

cell wall; is, intercellular space; v, vesicle. 949 

 950 

FIGURE 3. Ion relative content and Na/K ratio under different concentrations of 951 

NaCl using SEM-EDS. (A) Leaf Na relative content, (B) Stem Na relative content, 952 

(C) Root Na relative content, (D) Leaf Cl relative content, (E) Stem Cl relative 953 

content, (F) Root Cl relative content, (G) Leaf K relative content, (H) Stem K relative 954 

content, (I) Root K relative content, (J) ratio of Na to K in leaf, (K) ratio of Na to K 955 

in stem, (L) ratio of Na to K in root. Values are means and bars indicate SDs (n = 6). 956 

Columns with different letters indicate significant difference by Duncan's multiple 957 

range tests at P < 0.05 (Duncan test). 958 

 959 

FIGURE 4. Effects of NaCl treatment on free proline content. Values are means 960 

and bars indicate SDs (n = 6). Columns with different letters indicate significant 961 

difference by Duncan's multiple range tests at P < 0.05. 962 

. 963 

 964 

FIGURE 5. Effects of NaCl treatment on activities of catalase (CAT) and 965 

superoxide dismutase (SOD). (A) CAT activity, (B) SOD activity. Values are means 966 

and bars indicate SDs (n = 6). Columns with different letters indicate significant 967 

difference by Duncan's multiple range tests at P < 0.05. 968 

 969 
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FIGURE 6. Effects of NaCl treatment on malondialdehyde (MDA) content. 970 

Values are means and bars indicate SDs (n = 6). Columns with different letters 971 

indicate significant difference by Duncan's multiple range tests at P < 0.05. 972 

 973 

FIGURE 7. Effects of NaCl treatment on stomatal area (A) and chlorophyll 974 

content (B). Values are means and bars indicate SDs (n = 6). Columns with different 975 

letters indicate significant difference by Duncan's multiple range tests at P < 0.05. 976 

 977 

FIGURE 8. Schematic model of ultrastructural and physiological responding 978 

mechanisms of potato (Solanum tuberosum L.) plantlets to gradient saline stress. 979 

(A) Under non-salinity condition, water and ions was maintained at a balance status, 980 

only little proline (Pro), CAT, SOD and MDA were accumulated within cytosol, and 981 

integrated chloroplasts were closely arranged along plasma membrane. (B) Under 982 

moderate salinity condition, abundant Na+ was transported into cytosol probably 983 

through non-selective cation channels (NSCCs), high-affinity K+ transporters (HKTs, 984 

probably HKT1;2; HKT1;4; HKT1;5 and HKT2;1) and a little permeated directly 985 

across plasma membrane, and Cl- was probably transported by cation-Cl− 986 

cotransporter (CCC). Some K+ was transported out of the cell by K+ 987 

outward-rectifying channels (KORs) activated by membrane depolarization (DPZ). 988 

The membrane system was damaged resulting in the increase of MDA and damaged 989 

chloroplasts were not closely arranged along plasma membrane. Stoma closed 990 

because of water loss and chlorophyll content decreased because of chloroplast 991 

damage. For adaptation to moderate salinity, Na+ efflux or extrusion by plasma 992 

membrane Na+/H+ antiporter (salt overly sensitive, SOS1) motivated by plasma 993 

membrane ATPase (PM-ATPase) and vacuolar Na+ compartmentation by tonoplast 994 

Na+/H+ antiporter (NHX1) motivated by vacuolar ATPase (V-ATPase) and 995 

H+-pyrophosphatase (VP1) functioned to reduce Na+ toxicity in cytosol, at the same 996 

time osmoprotectants such as proline were accumulated and the activities of 997 

antioxidant enzymes (CAT and SOD) increased. (C) Under high salinity condition, 998 
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more and more Na+ was transported into cytosol probably through NSCCs and 999 

permeated directly across plasma membrane although the amount of Na+ transported 1000 

by HKTs did not increase, and more Cl- was probably transported by CCC. More and 1001 

more K+ was transported out of the cell by KOR. The membrane system was seriously 1002 

damaged resulting in the rapid increase of MDA and disintegrated chloroplasts 1003 

appeared. Stoma closed completely because of increasing water loss and chlorophyll 1004 

content decreased dramatically because of severe chloroplast damage. However, the 1005 

ability of Na+ efflux or extrusion by SOS1 and vacuolar Na+ compartmentation by 1006 

NHX1 were not enhanced because of serious damage to membrane system, at the 1007 

same time osmoprotectant content and the activities of antioxidant enzymes (CAT and 1008 

SOD) did not increased any more, but even decreased. Therefore, the growth of potato 1009 

plantlets was inhibited. 1010 

 1011 

Figure S1. Growth of potato plantlets in MS agar plates. Plantlets grown on MS 1012 

were transferred to new solid agar MS supplemented with various concentrations of 1013 

NaCl (0, 25, 50, 100 and 200 mM) for two weeks and six weeks, respectively. 1014 
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