Comparative transcriptome analysis reveals unique genetic adaptations conferring salt tolerance in a xerohalophyte

发布时间:2019-06-10 字体大小 T |T

Title: Comparative transcriptome analysis reveals unique genetic adaptations conferring salt tolerance in a xerohalophyte

Authors: Wei-Wei Chai, Wen-Ying Wang, Qing Ma, Hong-Ju Yin, Shelley R. Hepworth and Suo-Min Wang

Journal: Functional Plant Biology

Impact Factor: IF2017 = 2.083 (生物三区)

Abstract: Most studies about salt tolerance in plants have been carried out in glycophytes like Arabidopsis thaliana, with limited resistance to salinity. The xerohalophyte Zygophyllum xanthoxylum is a salt-accumulating desert plant that efficiently transports Na+ into vacuoles to manage salt and exhibits increased growth under salinity conditions, suggesting a unique transcriptional response compared with glycophytes. We used transcriptome profiling by RNA-seq to compare gene expression in roots of Z. xanthoxylum and A. thaliana under 50 mM NaCl treatments. GO functional annotation and KEGG metabolic pathway analysis suggested that 50 mM NaCl was perceived as a stimulus for Z. xanthoxylum whereas a stress for A. thaliana. Exposure to 50 mM NaCl caused metabolic shifts toward gluconeogenesis to stimulate growth of Z. xanthoxylum, but triggered defensive systems in A. thaliana. Compared with A. thaliana, a vast array of ion transporter genes was induced in Z. xanthoxylum, revealing an active strategy to uptake Na+ and nutrients from the environment. An ascorbate-glutathione scavenging system for reactive oxygen species was also crucial in Z. xanthoxylum, based on high expression of key enzyme genes. Finally, key regulatory genes for the biosynthesis pathways of abscisic acid and gibberellin showed distinct expression patterns between the two species and auxin response genes were more active in Z. xanthoxylum compared to A. thaliana. Our results provide an important framework for understanding unique patterns of gene expression conferring salt resistance in Z. xanthoxylum.

文章链接:http://www.publish.csiro.au/FP/FP18295